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Preface

Bioelectric phenomena have been a part of medicine throughout its history. The first written document on
bioelectric events is an ancient Egyptian hieroglyph of 4000 B.C. describing the electric sheatfish.
Bioelectromagnetism is, of course, based strongly on the general theory of electromagnetism. In fact,
until the middle of the nineteenth century the history of electromagnetism was also the history of
bioelectromagnetism. From the viewpoint of modern science, bioelectric phenomena have had scientific
value for the past 200 years. Many of the fundamental contributions to the theory of bioelectromagnetism
were made in the nineteenth century. Only in the past 100 years has bioelectromagnetism had real
diagnostic or therapeutic value. As we know, this is actually the case for most of medicine as well.
During the past few decades, the advances in the theory and technology of modern electronics
have led to improvements in medical diagnostic and therapeutic methods and, as a result,
bioelectric and biomagnetic phenomena have become increasingly important. Today it is
impossible to imagine a hospital without electrocardiography and electroencephalography. The
development of microelectronics has made such equipment portable and has increased their
diagnostic power. Implantable cardiac pacemakers have allowed millions of people to return to
normal life. The development of superconducting technology has made it possible to detect the
weak biomagnetic fields induced by bioelectric currents. The latest advances in the measurement
of electric currents flowing through a single ion channel of the cell membrane with the patch
clamp have opened up completely new applications for bioelectromagnetism. With the patch
clamp, bioelectromagnetism can also be applied to molecular biology, for instance, in developing
new pharmaceuticals. These examples illustrate that bioelectromagnetism is a vital part of our
everyday life.
This book first provides a short introduction to the anatomy and physiology of excitable tissues,
and then introduces the theory and associated equations of bioelectric and biomagnetic
phenomena; this theory underlies all practical methods. The book then describes current
measurement methods and research results and provides an account of their historical
development.
The chapters dealing with the anatomy and physiology of various organs are necessarily
elementary as comprehensive texts are available in these disciplines. Nevertheless, we wanted to
include introductory descriptions of the anatomy and physiology of neural and cardiac tissues in
particular so that the readers would have a review of the structures and functions upon which
electrophysiological models are based. We have also introduced readers to the relevant vocabulary
and to important general references.
The theory of bioelectromagnetism deals mainly with electrophysiological models of bioelectric
generators, excitability of tissues, and the behavior of bioelectric and biomagnetic fields in and
around the volume conductors formed by the body. Because of the nature of the bioelectric
sources and the volume conductors, the theory and the analytic methods of bioelectromagnetism
are very different from those of general electromagnetism. The theoretical methods are presented
as a logical structure. As part of this theory the lead field theoretical approach has been
emphasized. Besides the obvious benefits of this approach, it is also true that lead field theory has
not been discussed widely in other didactic publications. The lead field theory ties together the
sensitivity distribution of the measurement of bioelectric sources, the distribution of stimulation
energy, and the sensitivity distribution of impedance measurements, in both electric and magnetic
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applications. Moreover, lead field theory clearly explains the similarities and differences between
the electric and the corresponding magnetic methods, which are tightly related by Maxwell's
equations. Thus, all the subfields of bioelectromagnetism are closely related.

We have aimed to present bioelectromagnetism as a theoretical discipline and, in later chapters to
provide much practical material so that the book can also serve as a reference. These chapters also
provide an opportunity to introduce some relevant history. In particular, we wanted to present the
theory and applications of bioelectricity in parallel with those of biomagnetism to show that in
principle they form an inseparable pair. This gave us an opportunity to introduce some relevant
history so that readers may recognize how modern research is grounded in older theory and how
the fundamentals of many contemporary methods were actually developed years ago. Our scope in
the later chapters is necessarily limited, and thus readers will find only an overview of the topics
(applications). Despite their brevity, these applications should help clarify and strengthen the
reader's understanding of basic principles. While better measurement methods than those existing
today will undoubtedly be developed in the future, they will necessarily be based on the same
theory and mathematical equations given in this book; hence, we believe that its underlying
"truth" will remain relevant.

This book is intended for readers with a background in physics, mathematics, and/or engineering
(at roughly the second- or third-year university level). Readers will find that some chapters require
a solid background in physics and mathematics in order to be fully understood but that most can
be understood with only an elementary grounding in these subjects.

The initiative for writing this book came from Dr. Jaakko Malmivuo. It is for the most part based
on lectures he has given at the Ragnar Granit Institute (formerly Institute of Biomedical
Engineering) of Tampere University of Technology and at Helsinki University of Technology in
Finland. He has also lectured on bioelectromagnetism as a visiting professor at the Technical
University of Berlin, at Dalhousie University in Halifax, and at Sophia University in Tokyo, and
has conducted various international tutorial courses. All the illustrations were drawn by Dr.
Malmivuo with a microcomputer using the graphics program CoreIDRAW!. The calculations of
the curves and the fields were made with MathCad and the data were accurately transferred to the
illustrations.

The manuscript was read and carefully critiqued by Dr. Milan Hora ek at Dalhousie University
and Dr. David Geselowitz of Pennsylvania State University. Their valuable comments are
acknowledged with gratitude. Sir Alan Hodgkin and Sir Andrew Huxley read Chapter 4. We are
grateful for their detailed comments and the support they gave our illustration of the Hodgkin-
Huxley membrane model. We are grateful also to the staff of Oxford University Press, especially
Jeffrey House, Dolores Oetting, Edith Barry, Roaalind Corman, and Alasdair Ritchie. Dr. Ritchie
carefully read several chapters and made detailed suggestions for improvement. We also thank the
anonymous reviewer provided by Oxford University Press for many valuable comments. Ms.
Tarja Erdlaukko and Ms. Soile Lonnqvist at Ragnar Granit Institute provided editorial assistance
in the preparation of the manuscript and the illustrations. We also appreciate the work of the many
students and colleagues who critiqued earlier versions of the manuscript. The encouragement and
support of our wives, Kirsti and Vivian, are also gratefully acknowledged.

Financial support from the Academy of Finland and Ministry of Education in Finland is greatly
appreciated.

We hope that this book will raise our readers' interest in bioelectromagnetism and provide the
background that will allow them to delve into research and practical applications in the field. We
also hope that the book will facilitate the development of medical diagnosis and therapy.

Tampere, Finland J.M.
Durham, North Carolina R.P.
September 1993
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Symbols and Units

oh, O, O transfer rate coefficients (Hodgkin-Huxley model)

Bh’ Bma Bn -"-

65, 8V

pi, pO

Gi , Gi

Gia GO

0,0

two-dimensional [m™] and three-dimensional [m™] Dirac delta functions
permittivity [F/m]

electromotive force (emf) [V]

conduction velocity (of wave) [m/s]

membrane length constant [cm] (~ (/1) = V(Rma/2p5))

magnetic permeability of the medium [H/m = Vs/Am]

electrochemical potential of the ion in general and in the reference state [J/mol]
nodal width [um]

resistivity [Q2m], charge density [C/m’]

intracellular and interstitial bidomain resistivities [kQ-cm]

bidomain membrane resistivity [kQ-cm]

bidomain total tme impedance [kQ-cm]

intracellular and interstitial resistivities [kQ-cm]

conductivity [S/m]

intracellular and interstitial bidomain conductivities [mS/cm]
intracellular and interstitial conductivities [mS/cm]

membrane time constant [ms] (= rycn in one-dimensional problem, = R, Cy, in two-
dimensional problem)

longitude (azimuth), colatitude, in spherical polar coordinates
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() potential [V]
D;, O, potential inside and outside the membrane [mV]

reciprocal electric scalar potential field of electric lead due to unit reciprocal current

Dre [V/A]

. rec‘ipr'ocal mggn;tic scalar potential field of magnetic lead due to reciprocal current of
unit time derivative [Vs/A]

o, ¥ two scalar functions (in Green's theorem)

Y surface to volume ratio of a cell [1/cm]

® radial frequency [rad] (= 2xnf)

Q solid angle [sr (steradian) = m*/m’]

a radius [m], fiber radius [um]

I unit vector

A azimuth angle in spherical coordinates [ ° ]

A cross-sectional area [m_]

A magnetic vector potential [Wb/m = Vs/m]

B magnetic induction (magnetic field density) [Wb/m® = Vs/m’]

5 reciprocal magnetic induction of a magnetic lead due to reciprocal current of unit time
M derivative [Wb-s/Am” = Vs*/Am’]

c particle concentration [mol/m”’]

£ lead vector

Ci,Co intracellular and extracellular ion concentrations (monovalent ion) [mol/m’]
I ion concentration of the &™ permeable ion [mol/m’]

Cm membrane capacitance per unit length [uF/cm fiber length]

C electric charge [C (Coulomb) = As]

Cn membrane capacitance per unit area (specific capacitance) [uF/cm_]

d double layer thickness, diameter [um]

di,d, fiber internal and external myelin diameters [pm]
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gKa gNaa
8L

GK, GNa)
G

GK maxs

GNa max

Gm
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outward surface normal

Fick's constant (diffusion constant) [cm?/s = cm’/(cm's)]

electric displacement [C/m?’]

elevation angle in spherical coordinates [ ° |

electric field [V/m]

reciprocal electric field of electric lead due to unit reciprocal current [V/Am]

reciprocal electric field of magnetic lead due to reciprocal current of unit time
derivative [Vs/Am]

Faraday's constant [9.649-10* C/mol]
magnetic flux [Wb = Vs]

membrane conductances per unit length for potassium, sodium, and chloride (leakage)
[mS/cm fiber length]

membrane conductances per unit area for potassium, sodium, and chloride (leakage)
[mS/cm?]

. . . . )
maximum values of potassium and sodium conductances per unit area [mS/cm”]

membrane conductance per unit area [mS/cm’]
distance (height) [m]

membrane thickness [pum]

gating variables (Hodgkin-Huxley model)
hematocrit [%]

magnetic field [A/m]

reciprocal magnetic field of a magnetic lead due to reciprocal current of unit time
derivative [s/m]

membrane current per unit length [uA/cm fiber length] (= 2naly,)
reciprocal current through a differential source element [A]
electric current [A]

applied steady-state (or stimulus) current [pLA]
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I, 1,

IK> INa» IL
Ix, Ina, IL
I

I

imCa imIa
imR

ImCa Imla
ImR

J>Jk

jD:jC

|

il

dv
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axial currents [WA] and axial currents per unit area [ ],LA/cmz] inside and outside the cell

membrane current carried by potassium, sodium, and chloride (leakage) ions per unit
length [pA/cm fiber length]

membrane current carried by potassium, sodium, and chloride (leakage) ions per unit
area [uA/cm_]

lead current in general [A]

membrane current per unit area [LA/ cm?] (= Imc + Inr), bidomain membrane current
per unit volume [pA/cmi]

capacitive, ionic, and resistive components of the membrane current per unit length
[LA/cm fiber length] (= 2nalinc , = 2naly, , = 2nalyr )

capacitive, ionic, and resistive components of the membrane current per unit area
[nA/em, ]

total reciprocal current [A]

rheobasic current per unit area [pA/cm?]

stimulus current per unit area [pA/cm?]

jonic flux, ionic flux due to the k™ ion [mol/(cm®s)]

jonic flux due to diffusion, due to electric field [mol/(cm*s)]
electric current density [A/m’]

source element

impressed current density [pA/cm?], impressed dipole moment per unit volume
[LA-cm/cm’]

intracellular and interstitial current densities [pLA/ cm’]

flow (flux) and vortex source components of the impressed current density [ nA/cm?’]
radial and tangential components of the impressed current density [pLA/ cm’]

lead field in general [A/m?]

electric lead field due to unit reciprocal current [1/m?]

lead field of current feeding electrodes for a unit current [1/m?] (in impedance
measurement)

magnetic lead field due to reciprocal current of unit time derivative [s/m’]
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K

constant

K(k), E(k) complete elliptic integrals

K

|

Ml, M2>
M;

Pq, Pk,
PNa

secondary current source for electric fields [LA/cm?]
length [m], internodal spacing [um]

liter

inductance [H = Wb/A = Vs/A]

magnetic dipole moment of a volume source [Am’]
vector magnitude in spherical coordinates

peak vector magnitudes during the initial, mid, and terminal phases of the QRS-
complex in ECG [mV] and MCG [pT]

number of moles

surface normal (unit length)

surface normal of surface S; directed from the primed region to the double-primed one
electric dipole moment per unit area [Am/m* = A/m)]

electric dipole moment of a volume source [Am]

pressure [N/m_]
membrane permeabilities of chloride, potassium and sodium iones [m/s]

radius, distance [m], vector magnitude in spherical polar coordinates
correlation coefficient
radius vector

axial intracellular and interstitial resistances per unit length [k€)/cm fiber length] (r; =
1/c; pa’)

membrane resistance times unit length [kQ-cm fiber length] (= Ry,/2pa)
gas constant [8.314 J/(mol-K)]

axial resistances of the intracellular and interstitial media [kQ]
membrane resistance times unit area (specific resistance) [kQ-cm’]
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Sct, Sk,
SNa

Vi

Vim

VK: VNaa
o

Vra Vth

I'r

V7

XY Z

series resistance [MQ]
electric current densities due to chloride, potassium and sodium ion fluxes [uA/cm?]

time [s]

temperature [ © C], absolute temperature [K]

ionic mobility [cm?*/(V-s)]

velocity [m/s]

volume [m’]

voltage [V]

deviation of the membrane voltage from the resting state [mV] (= V;, - V;)
clamp voltage [mV]

lead voltage in general [V]

lead voltage of electric lead due to unit reciprocal current [V]

lead voltage of magnetic lead due to reciprocal current of unit time derivative [V]
Nernst voltages for potassium, sodium, and chloride (leakage) ions [mV]

membrane voltage [mV] (= @; - O,)

resting and threshold voltages of membrane [mV]
reversal voltage [mV]

measured voltage (in impedance measurement) [V]
work [J/mol]

rectangular coordinates

valence of the ions

impedance [Q]

The List of Symbols and Units includes the main symbols existing in the book. Symbols, which
appear only in one connection or are obvious extensions of those in the list, are not necessarily
included. They are defined in the text as they are introduced.
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The dimensions for general variables follow the SI-system.

The dimensions for variables used in electrophysiological measurements follow, for practical
reasons, usually the tradition in this discipline. Lower case symbols are used in the one-
dimensional problem, where they are defined "per unit length". Upper case symbols are used in
the two-dimensional problem, where they are defined "per unit area". Upper case symbols may
also represent a variable defined "for the total area". (As usual in the bioelectric literature, the
symbol "[" is used for membrane currents also in the two-dimensional problem, though in physics
current density is represented with the symbol "J".).
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ac
AV

CcO

DC

ECG, MCG
EDR

EEG, MEG
EHV, MHV
emf

EMG, MMG
ENG, MNG
EOG, MOG
EPSP,IPSP
ERG, MRG
ERP

ESR

F,V

FN, FP

GSR

HR

IPL

23

Abbreviations

alternating current

atrio-ventricular

cardiac output

direct current

electrocardiogram, magnetocardiogram
electrodermal response

electroencephalogram, magnetoencephalogram
electric heart vector, magnetic heart vector
electromotive force

electromyogram, magnetomyogram
electronystagmogram, magnetonystagmogram
electro-oculogram, magneto-oculogram
excitatory and inhibitory post-synaptic potentials
electroretinogram, magnetoretinogram

early receptor potential

electric skin resistance

flow, vortex

false negative, false positive

galvanic skin reflex

heart rate

inner plexiform layer
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LA, RA, LL

LBBB, RBBB

LVED
LVH, RVH
LRP
MFV
MI
MSPG
OPL
PAT
PCG
PGR
REM
rf

rms
RPE
SA
SQUID
SV
TEA
TN, TP
TTS

TTX

VCG
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left arm, right arm, left leg

left bundle-branch block, right bundle-branch block
left ventricular end-diastolic

left ventricular hypertrophy, right ventricular hypertrophy
late receptor potential

magnetic field vector

myocardial infarction

magnetic susceptibility plethysmography

outer plexiform layer

paroxysmal atrial tachycardia

phonocardiogram

psychogalvanic reflex

rapid eye movements

radio-frequency

root mean square

retinal pigment epithelium

sino-atrial

Superconducting QUantum Interference Device
stroke volume

tetracthylammonium

true negative, true positive

transverse tubular system

tetrodotoxin

ECG lead (Vg, Vi, Vg, aVg, aVy, aVg, Vi ... Vi)

vectorcardiography
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VECG, VMCG vector electrocardiography, vector magnetocardiography

WPW Wolf-Parkinson-White (syndrome)
Quantity Symbol  Value Dimension
Absolute temperature T T[°C]+273.16  (kelvin)
Avogadro's number N 6.022 x 10 1/mol

Electric permittivity

for free space €o 8.854 C/(V-'m)
Elementary charge e 1.602 x 107" C
Faraday's constant F 9.648 x 10* C/mol
Gas constant R 1.987 cal/(K-mol)

(in energy units) 8.315 J/(K-mol)
Joule J 1 kgm?/s*

1 V-C=W-s
0.2389 cal
Magnetic permeability
for free space u 4107 H/m
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Introduction

1.1 THE CONCEPT OF BIOELECTROMAGNETISM

Bioelectromagnetism is a discipline that examines the electric, electromagnetic, and magnetic phenomena
which arise in biological tissues. These phenomena include:

The behavior of excitable tissue (the sources)

The electric currents and potentials in the volume conductor

The magnetic field at and beyond the body

The response of excitable cells to electric and magnetic field stimulation
The intrinsic electric and magnetic properties of the tissue

It is important to separate the concept of bioelectromagnetism from the concept of medical electronics; the
former involves bioelectric, bioelectromagnetic, and biomagnetic phenomena and measurement and
stimulation methodology, whereas the latter refers to the actual devices used for these purposes.

By definition, bioelectromagnetism is interdisciplinary since it involves the association of the life sciences
with the physical and engineering sciences. Consequently, we have a special interest in those disciplines
that combine engineering and physics with biology and medicine. These disciplines are briefly defined as
follows:

Biophysics: The science that is concerned with the solution of biological problems in terms of the concepts
of physics.

Bioengineering: The application of engineering to the development of health care devices, analysis of
biological systems, and manufacturing of products based on advances in this technology. This term is also
frequently used to encompass both biomedical engineering and biochemical engineering (biotechnology).

Biotechnology: The study of microbiological process technology. The main fields of application of
biotechnology are agriculture, and food and drug production.

Medical electronics: A division of biomedical engineering concerned with electronic devices and methods
in medicine.

Medical physics: A science based upon physical problems in clinical medicine.

Biomedical engineering: An engineering discipline concerned with the application of science and
technology (devices and methods) to biology and medicine.
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mzZ—0O—0m=

Fig. 1.1. Currently recognized interdisciplinary fields that associate physics and engineering with
medicine and biology:

BEN = bioengineering,

BPH = biophysics,

BEM = bioelectromagnetism,
MPH = medical physics,
MEN = medical engineering,
MEL = medical electronics.

Figure 1.1 illustrates the relationships between these disciplines. The coordinate origin represents the more
theoretical sciences, such as biology and physics. As one moves away from the origin, the sciences become
increasingly applied. Combining a pair of sciences from medical and technical fields yields
interdisciplinary sciences such as medical engineering. It must be understood that the disciplines are
actually multidimensional, and thus their two-dimensional description is only suggestive.

1.2 SUBDIVISIONS OF BIOELECTROMAGNETISM

1.2.1 Division on a Theoretical Basis

The discipline of bioelectromagnetism may be subdivided in many different ways. One such
classification divides the field on theoretical grounds according to two universal principles:
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Maxwell's equations (the electromagnetic connection) and the principle of reciprocity. This
philosophy is illustrated in Figure 1.2 and is discussed in greater detail below.

Maxwell's Equations

Maxwell's equations, i.e. the electromagnetic connection, connect time-varying electric and magnetic fields
so that when there are bioelectric fields there always are also biomagnetic fields, and vice versa (Maxwell,
1865). Depending on whether we discuss electric, electromagnetic, or magnetic phenomena,
bioelectromagnetism may be divided along one conceptual dimension (horizontally in Figure 1.2) into
three subdivisions, namely

(A) Bioelectricity,
(B) Bioelectromagnetism (biomagnetism), and
(C) Biomagnetism.

Subdivision B has historically been called "biomagnetism" which unfortunately can be confused with our
Subdivision C. Therefore, in this book, for Subdivision B we also use the conventional name
"biomagnetism" but, where appropriate, we emphasize that the more precise term is
"bioelectromagnetism." (The reader experienced in electromagnetic theory will note the omission of a
logical fourth subdivision: measurement of the electric field induced by variation in the magnetic field
arising from magnetic material in tissue. However, because this field is not easily detected and does not
have any known value, we have omitted it from our discussion).

Reciprocity

Owing to the principle of reciprocity, the sensitivity distribution in the detection of bioelectric signals, the
energy distribution in electric stimulation, and the sensitivity distribution of electric impedance
measurements are the same. This is also true for the corresponding bioelectromagnetic and biomagnetic
methods, respectively. Depending on whether we discuss the measurement of the field, of
stimulation/magnetization, or the measurement of intrinsic properties of tissue, bioelectromagnetism may
be divided within this framework (vertically in Figure 1.2) as follows:.

(D Measurement of an electric or a magnetic field from a bioelectric source or (the magnetic field from)
magnetic material.

(I) Electric stimulation with an electric or a magnetic field or the magnetization of materials (with
magnetic field)

(III) Measurement of the intrinsic electric or magnetic properties of tissue.
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BIOELECTROMAGNETISM

A)
BIOELECTRICITY

Electric field from
hioelectric source

Magnetic field from
hioelectric zource

Electric stimulation
with magnetic field

Electric stimulation
with electric field

Electrotherapy Magnetoelectrotherapy

Electric
measurement
of eledric
impedance

<
Fig. 1.2. Organization of bioelectromagnetism into its subdivisions. It is first divided
horizontally to:

A) bioelectricity

B) bioelectromagnetism (biomagnetism), and

C) biomagnetism.
Then the division is made vertically to:

I) measurement of fields,

II) stimulation and magnetization, and
IIT) measurement of intrinsic electric and magnetic properties of tissue.

MAXWELL'S EQUA

The horizontal divisions are tied together by Maxwell's equations and the vertical
divisions by the principle of reciprocity.

Description of the Subdivisions

The aforementioned taxonomy is illustrated in Figure 1.2 and a detailed description of its elements is given

in this section.

(1) Measurement of an electric or a magnetic field refers, essentially, to the electric or magnetic signals
produced by the activity of living tissues. In this subdivision of bioelectromagnetism, the active tissues
produce electromagnetic energy, which is measured either electrically or magnetically within or outside the
organism in which the source lies. This subdivision includes also the magnetic field produced by magnetic
material in the tissue. Examples of these fields in the three horizontal subdivisions are shown in Table 1.1.

Table 1.1 1) Measurements of fields
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(A) Bioelectricity (B) Bioelectromagnetism (C) Biomagnetism
(Biomagnetism)

Neural cells

electroencephalography (EEG) magnetoencephalography (MEG)
electroneurography (ENG) magnetoneurography (MNG)
electroretinography (ERG) magnetoretinography (MRG)

Muscle cells
electrocardiography (ECG) magnetocardiography (MCG)
electromyography (EMG) magnetomyography (MMG)
Other tissue
electro-oculography (EOG) magneto-oculography (MOG)
electronystagmography (ENG) magnetonystagmography (MNG)
magnetopneumogram

magnetohepatogram

(I) Electric stimulation with an electric or a magnetic field or the magnetization of materials includes the
effects of applied electric and magnetic fields on tissue. In this subdivision of bioelectromagnetism, electric
or magnetic energy is generated with an electronic device outside biological tissues. When this electric or
magnetic energy is applied to excitable tissue in order to activate it, it is called electric stimulation or
magnetic stimulation, respectively. When the magnetic energy is applied to tissue containing ferromagnetic
material, the material is magnetized. (To be accurate, an insulated human body may also be charged to a
high electric potential. This kind of experiment, called electrifying, were made already during the early
development of bioelectricity but their value is only in the entertainment.) Similarly the nonlinear
membrane properties may be defined with both subthreshold and transthreshold stimuli. Subthreshold
electric or magnetic energy may also be applied for other therapeutic purposes, called electrotherapy or
magnetotherapy. Examples of this second subdivision of bioelectromagnetism, also called electrobiology
and magnetobiology, respectively, are shown in Table 1.2.

Table 1.2 Il) Stimulation and magnetization
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(A) Bioelectricity (B) Bioelectromagnetism (C) Biomagnetism
(Biomagnetism)

Stimulation

patch clamp, voltage clamp

electric stimulation of magnetic stimulation of
the central nervous system the central nervous system
or of motor nerve/muscle or of motor nerve/muscle
electric cardiac pacing magnetic cardiac pacing
electric cardiac defibrillation magnetic cardiac defibrillation

Therapeutic applications
electrotherapy electromagnetotherapy magnetotherapy

electrosurgery
(surgical diathermy)
Magnetization

magnetization of
ferromagnetic material

(IIT) Measurement of the intrinsic electric or magnetic properties of tissue is included in
bioelectromagnetism as a third subdivision. As in Subdivision II, electric or magnetic energy is generated
by an electronic device outside the biological tissue and applied to it. However, when the strength of the
energy is subthreshold, the passive (intrinsic) electric and magnetic properties of the tissue may be obtained
by performing suitable measurements. Table 1.3 illustrates this subdivision:
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Table 1.3 IIl ) Measurement of intrinsic properties

(A) Bioelectricity (B) Bioelectromagnetism (C) Biomagnetism
(Biomagnetism)

electric measurement of magnetic measurement of measurement of magnetic
electric impedance electric impedance susceptibility
impedance cardiography magnetic susceptibility
plethysmography
impedance pneumography magnetic remanence measurement
impedance tomography impedance tomography magnetic resonance imaging (MRI)

electrodermal response (EDR)

Lead Field Theoretical Approach

As noted in the beginning of Section 1.2.1, Maxwell's equations connect time-varying electric and
magnetic fields, so that when there are bioelectric fields there are also biomagnetic fields, and vice versa.
This electromagnetic connection is the universal principle unifying the three subdivisions - A, B, and C - of
bioelectromagnetism in the horizontal direction in Figure 1.2. As noted in the beginning of this section, the
sensitivity distribution in the detection of bioelectric signals, the energy distribution in electric stimulation,
and the sensitivity distribution of the electric impedance measurement are the same. All of this is true also
for the corresponding bioelectromagnetic and biomagnetic methods, respectively. The universal principle
that ties together the three subdivisions I, II, and III and unifies the discipline of bioelectromagnetism in the
vertical direction in Figure 1.2 is the principle of reciprocity.

These fundamental principles are further illustrated in Figure 1.3, which is drawn in the same format as
Figure 1.2 but also includes a description of the applied methods and the /ead fields that characterize their
sensitivity/energy distributions. Before finishing this book, the reader may have difficulty understanding
Figure 1.3 in depth. However, we wanted to introduce this figure early, because it illustrates the
fundamental principles governing the entire discipline of bioelectromagnetism, which will be amplified
later on..
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Fig. 1.3. Lead field theoretical approach to describe the subdivisions of
bioelectromagnetism. The sensitivity distribution in the detection of bioelectric signals, the
energy distribution in electric stimulation, and the distribution of measurement sensitivity
of electric impedance are the same, owing to the principle of reciprocity. This is true also
for the corresponding bioelectromagnetic and biomagnetic methods. Maxwell's equations
tie time-varying electric and magnetic fields together so that when there are bioelectric
fields there are also bioelectromagnetic fields, and vice versa.

1.2.2 Division on an Anatomical Basis

Bioelectromagnetism can be classified also along anatomical lines. This division is appropriate especially
when one is discussing clinical applications. In this case, bioelectromagnetism is subdivided according to
the applicable tissue. For example, one might consider
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a) neurophysiological bioelectromagnetism;
b) cardiologic bioelectromagnetism; and
¢) bioelectromagnetism of other organs or tissues.

1.2.3 Organization of this Book

Because it is inappropriate from a didactic perspective to use only one of the aforementioned divisional
schemes (i.e.,division on a theoretical or an anatomical basis), both of them are utilized in this book. This
book includes 28 chapters which are arranged into nine parts. Table 1.4 illustrates how these chapters fit
into the scheme where by bioelectromagnetism is divided on a theoretical basis, as introduced in Figure
1.2.

Part I discusses the anatomical and physiological basis of bioelectromagnetism. From the anatomical
perspective, for example, Part I considers bioelectric phenomena first on a cellular level (i.e., involving
nerve and muscle cells) and then on an organ level (involving the nervous system (brain) and the heart).

Part II introduces the concepts of the volume source and volume conductor and the concept of modeling. It
also introduces the concept of impressed current source and discusses general theoretical concepts of
source-field models and the bidomain volume conductor. These discussions consider only electric concepts.

Part III explores theoretical methods and thus anatomical features are excluded from discussion. For
practical (and historical) reasons, this discussion is first presented from an electric perspective in Chapter
11. Chapter 12 then relates most of these theoretical methods to magnetism and especially considers the
difference between concepts in electricity and magnetism.

The rest of the book (i.e., Parts IV - IX) explores clinical applications. For this reason,
bioelectromagnetism is first classified on an anatomical basis into bioelectric and bio(electro)magnetic
constituents to point out the parallelism between them. Part IV describes electric and magnetic
measurements of bioelectric sources of the nervous system, and Part V those of the heart.

In Part VI, Chapters 21 and 22 discuss electric and magnetic stimulation of neural and Part VII, Chapters
23 and 24, that of cardiac tissue. These subfields are also referred to as electrobiology and magnetobiology.

Part VIII focuses on Subdivision III of bioelectromagnetism - that is, the measurement of the intrinsic
electric properties of biological tissue. Chapters 25 and 26 examine the measurement and imaging of tissue
impedance, and Chapter 27 the measurement of the electrodermal response.

In Part IX, Chapter 28 introduces the reader to a bioelectric signal that is not generated by excitable tissue:
the electro-oculogram (EOG). The electroretinogram (ERG) also is discussed in this connection for
anatomical reasons, although the signal is due to an excitable tissue, namely the retina.

The discussion of the effects of an electromagnetic field on the tissue, which is part of Subdivision II,
includes topics on cellular physiology and pathology rather than electromagnetic theory. Therefore this
book does not include this subject. The reader may get an overview of this for instance from (Gandhi,
1990; Reilly, 1992).

Table 1.4 Organization of this book (by chapter number) according to the division of bioelectromagnetism on a
theoretical basis.
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(A) Bioelectricity

(B) Bioelectromagnetism (C) Biomagnetism

(Biomagnetism)

(I) Measurement of fields

Electric field from
bioelectric source

04 Active behavior of the membrane

Magnetic field from Magnetic field from

bioelectric source magnetic material

Not discussed

05 Physiology of the synapse and

brain

06 Bioelectric behavior of the heart

07 Volume source and volume

conductor

08 Source-field models

09 Bidomain model

11 Theoretical methods

13 Electroencephalography
15 12-lead ECG

16 Vectorcardiography

17 Other ECG systems

18 Distortion in ECG

19 ECG diagnosis

28 Electric signals of the eye

12 Theory of biomagnetic
measurements

14 Magnetoencephalography
20 Magnetocardiography
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(1) Stimulation and magnetization

Electric stimulation Electric stimulation o .

. o . o Magnetization of material
with electric field with magnetic field
03 Subthreshold membrane Not discussed
phenomena 22 Magnetic stimulation

21 Functional electric stimulation
23 Cardiac pacing
24 Cardiac defibrillation

(111) Measurement of intrinsic properties

Electric measurement of Magnetic measurement of Magnetic measurement of
electric impedance electric impedance magnetic susceptibility

25 Impedance plethysmography Not discussed

26 Impedance tomography 26 Magnetic measurement of

27 Electrodermal response electric impedance tomography

Because discussion of Subdivision C would require the introduction of additional fundamentals, we have
chosen not to include it in this volume. As mentioned earlier, Subdivision C entails measurement of the
magnetic field from magnetic material, magnetization of material, and measurement of magnetic
susceptibility. The reader interested in these topics should consult Maniewski et al. (1988) and other
sources. At the present time, interest in the Subdivision C topic is limited.

1.3 IMPORTANCE OF BIOELECTROMAGNETISM

Why should we consider the study of electric and magnetic phenomena in living tissues as a separate
discipline? The main reason is that bioelectric phenomena of the cell membrane are vital functions of the
living organism. The cell uses the membrane potential in several ways. With rapid opening of the channels
for sodium ions, the membrane potential is altered radically within a thousandth of a second. Cells in the
nervous system communicate with one another by means of such electric signals that rapidly travel along
the nerve processes. In fact, life itself begins with a change in membrane potential. As the sperm merges
with the egg cell at the instant of fertilization, ion channels in the egg are activated. The resultant change in
the membrane potential prevents access of other sperm cells.

Electric phenomena are easily measured, and therefore, this approach is direct and feasible. In the
investigation of other modalities, such as biochemical and biophysical events, special transducers must be
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used to convert the phenomenon of interest into a measurable electric signal. In contrast electric
phenomena can easily be directly measured with simple electrodes; alternatively, the magnetic field they
produce can be detected with a magnetometer.

In contrast to all other biological variables, bioelectric and biomagnetic phenomena can be detected in real
time by noninvasive methods because the information obtained from them is manifested immediately
throughout and around the volume conductor formed by the body. Their source may be investigated by
applying the modern theory of volume sources and volume conductors, utilizing the computing capability
of modern computers. (The concepts of volume sources and volume conductors denote three-dimensional
sources and conductors, respectively, having large dimensions relative to the distance of the measurement.
These are discussed in detail later.) Conversely, it is possible to introduce temporally and spatially
controlled electric stimuli to activate paralyzed regions of the neural or muscular systems of the body.

The electric nature of biological tissues permits the transmission of signals for information and for control
and is therefore of vital importance for life. The first category includes such examples as vision, audition,
and tactile sensation; in these cases a peripheral transducer (the eye, the ear, etc.) initiates afferent signals
to the brain. Efferent signals originating in the brain can result in voluntary contraction of muscles to effect
the movement of limbs, for example. And finally, homeostasis involves closed-loop regulation mediated, at
least in part, by electric signals that affect vital physiologic functions such as heart rate, strength of cardiac
contraction, humoral release, and so on.

As a result of the rapid development of electronic instrumentation and computer science, diagnostic
instruments, which are based on bioelectric phenomena, have developed very quickly. Today it is
impossible to imagine any hospital or doctor's office without electrocardiography and
electroencephalography. The development of microelectronics has made such equipment portable and
strengthened their diagnostic power. Implantable cardiac pacemakers have allowed millions of people with
heart problems to return to normal life. Biomagnetic applications are likewise being rapidly developed and
will, in the future, supplement bioelectric methods in medical diagnosis and therapy. These examples
illustrate that bioelectromagnetism is a vital part of our everyday life.

Bioelectromagnetism makes it possible to investigate the behavior of living tissue on both cellular and
organic levels. Furthermore, the latest scientific achievements now allow scientists to do research at the
subcellular level by measuring the electric current flowing through a single ion channel of the cell
membrane with the patch-clamp method. With the latter approach, bioelectromagnetism can be applied to
molecular biology and to the development of new pharmaceuticals. Thus bioelectromagnetism offers new
and important opportunities for the development of diagnostic and therapeutic methods.

1.4 SHORT HISTORY OF BIOELECTROMAGNETISM

1.4.1 The First Written Documents and First Experiments in
Bioelectromagnetism

The first written document on bioelectric events is in an ancient Egyptian hieroglyph of 4000 B.C. The
hieroglyph describes the electric sheatfish (catfish) as a fish that "releases the troops." Evidently, when the
catch included such a fish, the fish generated electric shocks with an amplitude of more than 450 V, which
forced the fishermen to release all of the fish. The sheatfish is also illustrated in an Egyptian sepulcher
fresco (Morgan, 1868).

The Greek philosophers Aristotle (384-322 B.C.) and Thales (c.625-547 B.C.) experimented with amber
and recognized its power to attract light substances (Smith, 1931). The first written document on the
medical application of electricity is from the year A.D. 46, when Scribonius Largus recommended the use
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of torpedo fish for curing headaches and gouty arthritis (Kellaway, 1946). The electric fish remained the
only means of producing electricity for electrotherapeutic experiments until the seventeenth century.

William Gilbert (1544-1603), physician to Queen Elizabeth I of England, was the first to subject the
attractive power of amber to planned experiment. Gilbert constructed the first instrument to measure this
power. This electroscope was a light metal needle pivoted on a pin so that it would turn toward the
substances of attracting power (see Figure 1.4). Gilbert called the substances possessing this power of
attraction electricks, from the Greek name for amber (nAektpov). Thus he coined the term that eventually
became the new science of electricity. Gilbert published his experiments in 1600 in a book entitled De
Magnete (Gilbert, 1600). (The reader may refer to Figure 1.20 at the end of this chapter. It presents a
chronology of important historical events in bioelectromagnetism from the year 1600 until today.)

€S

Fig. 1.4. The first instrument to detect electricity was the electroscope invented by William
Gilbert. (Gilbert 1600).

The first carefully documented scientific experiments in neuromuscular physiology were conducted by Jan
Swammerdam (Dutch; 1637-80). At that time it was believed that contraction of a muscle was caused by
the flow of "animal spirits" or "nervous fluid" along the nerve to the muscle. In 1664, Swammerdam
conducted experiments to study the muscle volume changes during contraction (see Figure 1.5).
Swammerdam placed a frog muscle (b) into a glass vessel (a). When contraction of the muscle was
initiated by stimulation of its motor nerve, a water droplet (e) in a narrow tube, projecting from the vessel,
did not move, indicating that the muscle did not expand. Thus, the contraction could not be a consequence
of inflow of nervous fluid.
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Fig. 1.5. Stimulation experiment of Jan Swammerdam in 1664. Touching the motoric
nerve of a frog muscle (b) in a glass vessel (a) with silver wire (¢) and a copper loop (d)
produces stimulation of the nerve, which elicits a muscular contraction; however, it is
uncertain as to whether the stimulation was produced as a result of electricity from the two
dissimilar metals or from the mechanical pinching. See also text. (Swammerdam, 1738.).

In many similar experiments, Swammerdam stimulated the motor nerve by pinching it. In fact, in this
experiment stimulation was achieved by pulling the nerve with a wire (c) made of silver (filium argenteum)
against a loop (d) made of copper (filium aeneum). According to the principles of electrochemistry, the
dissimilar metals in this experiment, which are embedded in the electrolyte provided by the tissue, are the
origin of an electromotive force (emf) and an associated electric current. The latter flows through the
metals and the tissue, and is responsible for the stimulation (activation) of the nerve in this tissue
preparation. The nerve, once activated, initiates a flow of current of its own. These are of biological origin,
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driven from sources that lie in the nerve and muscle membranes, and are distinct from the aforementioned
stimulating currents. The active region of excitation propagates from the nerve to the muscle and is the
immediate cause of the muscle contraction. The electric behavior of nerve and muscle forms the subject
matter of "bioelectricity," and is one central topic in this book.

It is believed that this was the first documented experiment of motor nerve stimulation resulting from an
emf generated at a bimetallic junction (Brazier, 1959). Swammerdam probably did not understand that
neuromuscular excitation is an electric phenomenon. On the other hand, some authors interpret the
aforementioned stimulation to have resulted actually from the mechanical stretching of the nerve. The
results of this experiment were published posthumously in 1738 (Swammerdam, 1738).

The first electric machine was constructed by Otto von Guericke (German; 1602-1686). It was a sphere of
sulphur ("the size of an infant's head") with an iron axle mounted in a wooden framework, as illustrated in
Figure 1.6. When the sphere was rotated and rubbed, it generated static electricity (von Guericke, 1672).
The second electric machine was invented in 1704 by Francis Hauksbee the Elder (British; 1666-1713). It
was a sphere of glass rotated by a wheel (see Figure 1.7). When the rotating glass was rubbed, it produced
electricity continuously (Hauksbee, 1709). It is worth mentioning that Hauksbee also experimented with
evacuating the glass with an air pump and was able to generate brilliant light, thus anticipating the
discovery of cathode rays, x-rays, and the electron.

Fig. 1.6. Otto von Guericke constructed the first electric machine which included a sphere
of sulphur with an iron axle. When rotating and rubbing the sphere it generated static
electricity. (Guericke, 1672).
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Fig. 1.7. Electric machine invented by Hauksbee in 1704. It had a sphere of glass rotated
by a wheel. When the glass was rotated and rubbed it produced electricity continuously. If
the glass was evacuated with air pump it generated brilliant light. (Hauksbee, 1709).

At that time the main use of electricity was for entertainment and medicine. One of the earliest statements
concerning the use of electricity was made in 1743 by Johann Gottlob Kriiger of the University of Halle:
"All things must have a usefulness; that is certain. Since electricity must have a usefulness, and we have
seen that it cannot be looked for either in theology or in jurisprudence, there is obviously nothing left but
medicine." (Licht, 1967).

1.4.2 Electric and Magnetic Stimulation

Systematic application of electromedical equipment for therapeutic use started in the 1700s. One can
identify four different historical periods of electromagnetic stimulation, each based on a specific type or
origin of electricity. These periods are named after Benjamin Franklin (American; 1706-1790), Luigi
Galvani (Italian; 1737-1798), Michael Faraday (British; 1791-1867), and Jacques Ars¢ne d'Arsonval
(French; 1851-1940), as explained in Table 1.5. These men were the discoverers or promoters of different

41 forras: BioLabor Biofizikai és Laboratoriumi Szolg. Kft. www.biolabor.hu



kinds of electricity: static electricity, direct current, induction coil shocks, and radiofrequency current,
respectively (Geddes, 1984a).

Table 1.5. Different historical eras of electric and
electromagnetic stimulation.

Scientist Lifetime Historical era

Benjamin Franklin 1706-1790 static electricity

Luigi Galvani 1737-1798 direct current

Michael Faraday 1791-1867 induction coil shocks
Jacques d'Arsonval 1851-1940 radiofrequency current

The essential invention necessary for the application of a stimulating electric current was the Leyden jar. It
was invented on the 11th of October, in 1745 by German inventor Ewald Georg von Kleist (c. 1700-1748)
(Krueger, 1746). It was also invented independently by a Dutch scientist, Pieter van Musschenbroek (1692-
1761) of the University of Leyden in The Netherlands in 1746, whose university affiliation explains the
origin of the name. The Leyden jar is a capacitor formed by a glass bottle covered with metal foil on the
inner and outer surfaces, as illustrated in Figure 1.8. The first practical electrostatic generator was invented
by Jesse Ramsden (British; 1735-1800) in 1768 (Mottelay, 1975).

Benjamin Franklin deduced the concept of positive and negative electricity in 1747 during his experiments
with the Leyden jar. Franklin also studied atmospheric electricity with his famous kite experiment in 1752.

Soon after the Leyden jar was invented, it was applied to muscular stimulation and treatment of paralysis.
As early as 1747, Jean Jallabert (Italian; 1712-1768), professor of mathematics in Genova, applied electric
stimulation to a patient whose hand was paralyzed. The treatment lasted three months and was successful.
This experiment,which was carefully documented (Jallabert, 1748), represents the beginning of therapeutic
stimulation of muscles by electricity.
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Fig. 1.8. The Leyden Jar, invented in 1745, was the first storage of electricity. It is formed
by a glass bottle covered with metal foil on the inner and outer surfaces. (Krueger, 1746).

The most famous experiments in neuromuscular stimulation were performed by Luigi Galvani, professor of
anatomy at the University of Bologna. His first important finding is dated January 26, 1781. A dissected
and prepared frog was lying on the same table as an electric machine. When his assistant touched with a
scalpel the femoral nerve of the frog sparks were simultaneously discharged in the nearby electric machine,
and violent muscular contractions occurred (Galvani, 1791; Rowbottom and Susskind, 1984, p. 35). (It has
been suggested that the assistant was Galvani's wife Lucia, who is known to have helped him with his
experiments.) This is cited as the first documented experiment in neuromuscular electric stimulation.

Galvani continued the stimulation studies with atmospheric electricity on a prepared frog leg. He connected
an electric conductor between the side of the house and the nerve of the frog leg. Then he grounded the
muscle with another conductor in an adjacent well. Contractions were obtained when lightning flashed. In
September 1786, Galvani was trying to obtain contractions from atmospheric electricity during calm
weather. He suspended frog preparations from an iron railing in his garden by brass hooks inserted through
the spinal cord. Galvani happened to press the hook against the railing when the leg was also in contact
with it. Observing frequent contractions, he repeated the experiment in a closed room. He placed the frog
leg on an iron plate and pressed the brass hook against the plate, and muscular contractions occurred.

Continuing these experiments systematically, Galvani found that when the nerve and the muscle of a frog
were simultaneously touched with a bimetallic arch of copper and zinc, a contraction of the muscle was
produced. This is illustrated in Figure 1.9 (Galvani, 1791). This experiment is often cited as the classic
study to demonstrate the existence of bioelectricity (Rowbottom and Susskind, 1984 p. 39), although, as
mentioned previously, it is possible that Jan Swammerdam had already conducted similar experiments in
1664. It is well known that Galvani did not understand the mechanism of the stimulation with the
bimetallic arch. His explanation for this phenomenon was that the bimetallic arch was discharging the
"animal electricity" existing in the body.

Alessandro Volta (Italian; 1745-1827), professor of physics in Pavia, continued the experiments on
galvanic stimulation. He understood better the mechanism by which electricity is produced from two
dissimilar metals and an electrolyte. His work led in 1800 to the invention of the Voltaic pile, a battery that
could produce continuous electric current (Volta, 1800). Giovanni (Joannis) Aldini (Italian; 1762-1834), a
nephew of Galvani, applied stimulating current from Voltaic piles to patients (Aldini, 1804). For electrodes
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he used water-filled vessels in which the patient's hands were placed. He also used this method in an
attempt to resuscitate people who were almost dead..

Fig. 1.9. Stimulation experiment of Luigi Galvani. The electrochemical behavior of two
dissimilar metals [(zinc (Z) and copper (C)] in a bimetallic arch, in contact with the
electrolytes of tissue, produces an electric stimulating current that elicits muscular
contraction.

In 1872, T. Green described cardiorespiratory resuscitation, a method used to resuscitate surgical patients
who were anesthetized with chloroform, an anesthetic with the side effect of depressing respiration and the
cardiac pulse. Using a battery of up to 200 cells generating about 300 volts, he applied this voltage to the
patient between the neck and the lower ribs on the left side. It is documented that T. Green used this
method successfully on five or seven patients who suffered sudden respiratory arrest and were without a
pulse (Green, 1872).

Michael Faraday's invention of the induction coil in 1831 initiated the faradic era of electromedicine
(Faraday, 1834). However, it was Emil Heinrich du Bois-Reymond (German; 1818-96), who in 1846
introduced the induction coil to medical applications (du Bois-Reymond, 1849). This was called the
Faraday stimulation. An induction coil with hammer break is shown in Figure 1.10. An early experiment
of Faraday stimulation of the cerebral cortex was made in 1874 by Dr. Robert Bartholow, a professor of
medicine in Cincinnati (Bartholow, 1881). Robert Bartholow stimulated the exposed cerebral cortex with
faradic currents and observed that they would elicit movements of the limbs of the opposite side and also
the turning of the head to that side (York, 1987).

In the late 1800s, Jacques Arscne d'Arsonval heated living tissue by applying high-frequency electric
current either with an electrode or with a large coil (see Figure 1.11) (d'Arsonval, 1893). This was the
beginning of diathermy.

Jacques d'Arsonval (1896) reported on a flickering visual sensation perceived when an individual's head
was placed within a strong time-varying magnetic field. This was generated with a large coil carrying 32 A
at 42 Hz. He called this phenomenon "magnetophosphenes." It was caused by the stimulating effect of the
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magnetic field to the retina, which is known to be very sensitive to it. This was the first experiment on
magnetic stimulation of the nervous system. The first transcranial magnetic stimulation of the motor
cortex was achieved in 1985 (Barker, Jalinous, and Freeston, 1985)..

Fig. 1.10. Induction coil with hammer break. Electric current from the battery (E) is fed to
the primary circuit of the induction coil (A). This current pulls the hammer with the
magnetic field of the solenoid (close to G) and breaks the circuit with the contactor (D).
Through the vibration of the hammer this breaking is continuous and it induces a high
voltage alternating current in the secondary circuit in (A). This current is applied to the
patient with electrodes (H)..
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Fig. 1.11. d'Arsonval's great solenoid. (d'Arsonval, 1893).

The first scientist to report direct cardiac pacing was F. Steiner (1871), who demonstrated this method in a
dog anesthetized with an overdose of chloroform. In 1882, Hugo Wilhelm von Ziemssen (German; 1829-
1902) applied this technique to a human (Ziemssen, 1882). It was only in 1932, when cardiac pacing was

reported by Albert Salisbury Hyman (American; 1893-1972), that this method was applied clinically to
atrial pacing (Hyman, 1932).

The modern era of cardiac pacing started in August 1952, when Paul Maurice Zoll (American; 1911- )
performed cardiac pacing for a duration of 20 min (Zoll, 1952). In 1958, Furman and Schwedel succeeded
in supporting a patient for 96 days with cardiac pacing (Furman and Schwedel, 1959).

The first implantation of a cardiac pacemaker, a milestone in the history of bioelectromagnetism, was
accomplished in Stockholm by the surgeon Lke Senning (1915- ). On October 8, 1958, at the Karolinska
Institute, he implanted the pacemaker made by engineer Rune Elmgqvist. The development of the

implantable pacemaker was made possible by the invention of the transistor by Bardeen and Brattain in
1948.

The first report on cardiac defibrillation, in 1899, is that by Jean Louis Prevost (Swiss; 1838-1927) and
Frédéric Battelli (Italian; 1867-1941) (Prevost and Battelli, 1899). They found, in animal experiments, that
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low-voltage electric shocks induced ventricular fibrillation whereas high-voltage shocks did not. Instead,
the latter defibrillated a fibrillating heart.

Modern ventricular defibrillation started with the famous work of William B. Kouwenhoven (American;
1886-1975) and his colleagues who, in the 1930s, used 60 Hz current to defibrillate a dog heart (Geddes,
1976). The first human defibrillation was accomplished by Beck and his colleagues in 1947 (Beck,
Pritchard and Feil, 1947).

1.4.3 Detection of Bioelectric Activity

The connection between electricity and magnetism was discovered in 1819 by Hans Christian Orsted
(Danish; 1777-1851). Orsted conducted his first experiment during his lecture at the University of
Copenhagen. Passing an electric current through a wire above a magnetic needle, he forced the needle to
move to the direction normal to the wire (see Figure 1.12) (Orsted, 1820a,b,c). By reversing the direction
of the electric current, he reversed the direction of the needle deflection. (The magnetic needle, i.e. the
compass, was invented in China about A.D. 100 and is the first detector of magnetic field.)

|
+-’} Magnetic
rneedle

Fig. 1.12. Reconstruction of the first demonstration of the electromagnetic connection by
Hans Christian Orsted in 1819. The battery generates an electric current I to flow in the
circuit formed by a metal wire. This current induces a magnetic induction around the wire.
The magnetic needle under the wire turns parallel to the direction of the magnetic
induction demonstrating its existence. (Orsted, 1820a,b.c).

After this discovery, it was possible to devise a galvanometer, an instrument detecting weak electric
currents. Invented by Johann Salemo Christopf Schweigger (German; 1779-1875) in 1821, it is based on
the deflection of a magnetized needle in the magnetic field inside a coil, into which the current to be
measured is introduced. Because he increased the magnetic field by using multiple loops of wire forming
the coil, Schweigger called his instrument multiplikator (Schweigger, 1821). In 1825, Leopold Nobili
(Italian; 1784-1835), a professor of physics in Florence, invented the astatic galvanometer (Nobili, 1825).
In its construction, Nobili employed a double coil of 72 turns wound in a figure eight (see Figure 1.13A).
One magnetic needle was located in each of the two openings. The needles were connected on the same
suspension. They were parallel, but of opposite polarity. Since the current flowed in opposite direction in
the two coils, both needles moved in the same direction. Because of their opposite direction, the needles
did not respond to Earth's magnetic field. Another version of the astatic galvanometer is illustrated in
Figure 1.13B. This construction includes only one coil around one of the two magnetic needles. The other
needle (identical but opposite in direction), provided with a scale, serves also as an indicator..
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Fig. 1.13. (A) Astatic galvanometer invented by Nobili in 1825. He compensated for the
effect of the Earth's magnetic field by placing two identical magnetic needles connected on
the same suspension in opposite directions in the openings of a coil wound in the form of
figure eight. (Nobili, 1825.) (B) A technically more advanced version of the astatic
galvanometer. Only one of the two identical (but opposite) needles is surrounded by a coil.
The other needle serves as an indicator.

Carlo Matteucci (Italian; 1811-65) was the first to measure a bioelectric current. Using the astatic
galvanometer, he made his first measurement of muscle impulse in frog muscle in 1838 (Matteucci, 1838),
although the report did not appear in print until 1842,

In 1841, the German physiologist Emil du Bois-Reymond had received a copy of Matteucci's short essay
on animal electricity, and thus was aware of the experiments of Matteucci. He repeated the studies with
improved instrumentation. Besides detecting the bioelectric current from frog muscle, du Bois-Reymond,
in 1842 (shortly before Matteucci's paper was published), measured the current arising from a frog nerve
impulse (du Bois-Reymond, 1843). One of his experiments is shown in Figure 1.14.

The English school of neurophysiology began when Richard Caton (British; 1842-1926) became interested
in the recording technique of du Bois-Reymond and applied it to the measurement of the electric activity of
the brains of rabbits and monkeys. The first report of his experiments, published in 1875 (Caton, 1875), is
believed to constitute the discovery of the electroencephalogram (EEG). In 1888, a young Polish scientist
Adolf Beck (1863- 1942), working for the great physiologist Napoleon Nicodemus Cybulski (1854-1919)
at the University of Krakow, succeeded in demonstrating that the electric impulse propagated along a nerve
fiber without attenuation (Beck, 1888). Without knowledge of the work of Caton, Beck studied the electric
activity of the brain in animal experiments and independently arrived at many of Caton's conclusions
(Beck, 1891). The German psychiatrist Hans Berger (1873-1941), made the first recording of the EEG on a
human in 1924, and identified the two major rhythms, and (Berger, 1929). Berger's recordings on EEG are
illustrated in Figure 1.15.
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Fig. 1.14. Du Bois-Reymond's apparatus for studying effect of continuous current on nerve.
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Fig. 1.15. A page from Berger's notebook illustrating early recordings of the human EEG.
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The tracings of the electric activity of the human heart, the electrocardiogram (ECG), was first measured
in 1887 by Augustus Waller (British; 1856-1922) using capillary electrometer (Waller, 1887; see Figure
1.16). In a capillary electrometer a moving photographic film is exposed along a glass capillary tube filled
with sulphuric acid and mercury. Their interface moves in response to an electric field. The sensitivity of
the capillary electrometer is about 1 mV, but its time response is very poor. The capillary electrometer was
invented in 1873 by Gabriel Lippman (1873), and the photographic technique by which the signal was
recorded by E. J. Marey and G. J. Lippman (1876).

Waller found that the cardiac electric generator has a dipolar nature (Figure 1.17) and suggested that the
ECG should be measured between the five measurement points formed by the hands, legs, and mouth (a
total of 10 bipolar leads). He was also the first to record a set of three nearly orthogonal leads, including
mouth-to-left arm, mouth-to-left leg, and back-to-front.

A pioneer in modern electrocardiography was Willem Einthoven (Dutch; 1860-1927) who, at the beginning
of this century, developed the first high-quality ECG recorder based on the string galvanometer
(Einthoven, 1908). Though Einthoven is often credited with inventing the string galvanometer, that honor
actually belongs to Clément Ader (1897). However, Einthoven undoubtedly made important improvements
in this device such that it was possible to apply it to clinical electrocardiography. Einthoven summarized
his fundamental results in ECG research in 1908 and 1913 (Einthoven, 1908; Einthoven et al., 1913), and
received the Nobel Prize for his work in 1924.

Horatio Williams, who was the first to construct a sequence of instantaneous vectors (Williams, 1914), is
usually considered to be the inventor of vectorcardiography. Hubert Mann made further studies in
vectorcardiography to develop it as a clinical tool. He published his first two-dimensional
vectorcardiogram based on Einthoven's triangle in 1916 (see Figure 1.18) and called this construction the
"monocardiogram" (Mann, 1920). After J. B. Johnson (1921) of the Western Electric Company invented
the low-voltage cathode ray tube, it became possible to display bioelectric signals in vector form in real
time. This invention allowed vectorcardiography to be used as a clinical tool.

The invention of the electron tube by Lee de Forest (American: 1873-1961) in 1906 allowed bioelectric
signals to be amplified, revolutionizing measurement technology. Finally, the invention of the transistor by
John Bardeen and Walter Brattain in 1948 marked the beginning of the semiconductor era. It also allowed
the instrumentation of bioelectromagnetism to be miniaturized, made portable and implantable, and more
reliable.

I

Fig. 1.16. The first recording of the human electrocardiogram by Augustus Waller (1887).
The recording was made with a capillary electrometer. The ECG recording (e) is the
borderline between the black and white areas. The other curve (h) is the apexcardiogram, a
recording of the mechanical movement of the apex of the heart.

50 forras: BioLabor Biofizikai és Laboratoriumi Szolg. Kft. www.biolabor.hu



. ,}‘-‘v i | 1 t
\) a a a a

Fig. 1.17. Electric field of the heart on the surface of the thorax, recorded by Augustus
Waller (1887). The curves (a) and (b) represent the recorded positive and negative
isopotential lines, respectively. These indicate that the heart is a dipolar source having the
positive and negative poles at (A) and (B), respectively. The curves (c) represent the
assumed current flow lines..
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Fig. 1.18. The monocardiogram by Mann. (Redrawn from Mann, 1920).

1.4.4 Modern Electrophysiological Studies of Neural Cells

The term neuron was first applied to the neural cell in 1891 by Heinrich Wilhelm Gottfried Waldeyer
(German; 1837-1921). Basic research into the study of neurons was undertaken at the end of the nineteenth
century by August Forel (Swiss; 1848-1931), Wilhelm His, Sr. (Swiss; 1831-1904), and Santiago Ramén y
Cajal (Spanish; 1852-1934). According to their theory, it is the neural cell that is the functional unit in the
nervous system. (In 1871, Santiago Ramoén y Cajal also discovered that neurons could be selectively
stained with a special silver preparation.)

Sir Charles Scott Sherrington (British; 1856-1952) introduced the concept of the synapse (Sherrington,
1897). He also contributed the concept of the reflex arc. Lord Edgar Douglas Adrian (British; 1889-1977)
formulated the all-or-nothing law of the neural cell in 1912 (Adrian and Lucas, 1912; Adrian, 1914) and
measured the electric impulse of a single nerve 1926. Adrian and Sherrington won the Nobel Prize in 1932.

The founder of membrane theory was Julius Bernstein (German; 1839-1917), a pupil of Hermann von
Helmholtz. Bernstein stated that the potential difference across the membrane was maintained by the
difference in concentration of potassium ions on opposite sides of the membrane. The membrane, which is
selectively permeable to all ions, has a particularly high permeability to potassium. This formed the basis
for an evaluation of the transmembrane voltage as proportional to the logarithm of the concentration ratio
of the potassium ions, as expressed by the Nernst equation.

Herbert Spencer Gasser (American; 1888-1963) and Joseph Erlanger (American; 1874-1965) studied nerve
impulses with the aid of a cathode ray tube. Because they could not get a cathode-ray oscilloscope from the
Western Electric Company, which had recently invented it, they built such a device themselves from a
distillation flask. Linking the device to an amplifier, they could record the time course of nerve impulses
for the first time (Gasser and Erlanger, 1922). With their experiments they were also able to confirm the
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hypothesis that axons of large diameter within a nerve bundle transmit nerve impulses more quickly than
do thin axons. For their studies Gasser and Erlanger received the Nobel Prize in 1944.

Sir Alan Lloyd Hodgkin (English; 1914- ) and Sir Andrew Fielding Huxley (English; 1914- ) investigated
the behavior of the cell membrane in great detail and developed a very accurate mathematical model of the
activation process (Hodgkin and Huxley, 1952). Sir John Eccles (Australian; 1903- ) investigated synaptic
transmission in Canberra, Australia, in the 1950s. Eccles, Hodgkin, and Huxley won the Nobel Prize in
1963.

Ragnar Arthur Granit (Finnish; 1900-1991) undertook fundamental research in the bioelectric phenomena
of the retina and the nervous system in the 1930s and 1940s. In 1935, he could show experimentally that
inhibitory synapses are found in the retina. Hermann von Helmholtz had proposed that the human ability to
discriminate a spectrum of colors could be explained if it could be proven that the eye contains receptors
sensitive to different wavelengths of light. Granit's first experiments in color vision, performed in 1937,
employed the electroretinogram (ERG) to confirm the extent of spectral differentiation. In 1939, Granit
developed a microelectrode, a device that permits the measurement of electric potentials inside a cell. With
this technique Granit further studied the color vision and established the spectral sensitivities of the three
types of cone cells - blue, green, and red. Ragnar Granit shared the 1967 Nobel Prize with H. Keffer
Hartline and George Wald "for their discoveries concerning the primary physiological and chemical visual
processes in the eye." (Granit, 1955)

The behavior of ion channels in the biological membrane has been described in greater detail through the
invention of the patch clamp technique by Erwin Neher (German; 1944- ) and Bert Sakmann (German;
1942- ) (Neher and Sakmann, 1976). With the patch clamp method it is possible to measure the electric
current from a single ionic channel. This extends the origins of bioelectromagnetism to molecular biology
so that this technique can also be used, for instance, in developing new pharmaceuticals. Neher and
Sakmann won the Nobel Prize in 1991.

1.4.5 Bioelectromagnetism

As mentioned in Section 1.4.3, the connection between electricity and magnetism was experimentally
discovered in 1819 by Hans Christian Orsted. French scientists Jean Baptiste Biot (1774- 1862) and Félix
Savart (1791-1841) proved that the force between a current-carrying helical wire and a magnet pole is
inversely proportional to the distance between them (Biot, 1820). André Marie Ampcre (French; 1775-
1836) showed that a current-carrying helical wire, which he called the solenoid, behaved magnetically as a
permanent magnet (Ampcre, 1820), hence linking the electric current to the production of a magnetic field.
Ampcre also developed the mathematical theory of electrodynamics (Ampcre, 1827). The electromagnetic
connection was theoretically formulated in 1864 by James Clerk Maxwell (British; 1831-79), who
developed equations that link time-varying electricity and magnetism (Maxwell, 1865). Since Orsted's
discovery, electromagnetic interdependence has been widely utilized in a large variety of devices.
Examples of these include those used for the measurement of electric current (galvanometers and
ammeters), electric generators, electric motors, and various radiofrequency devices. However, biomagnetic
signals were not detected for a long time because of their extremely low amplitude.

The first biomagnetic signal, the magnetocardiogram (MCG), was detected by Gerhard M. Baule and
Richard McFee in 1963 with an induction coil magnetometer (Baule and McFee, 1963). The magnetometer
was made by winding two million turns of copper wire around a ferrite core. In addition to the detector
coil, which was placed in front of the heart, another identical coil was connected in series and placed
alongside. The two coils had opposite senses and thereby canceled the distributing common magnetic fields
arising from distant external sources (see Figure 1.19). A remarkable increase in the sensitivity of
biomagnetic measurements was obtained with the introduction of the Superconducting QUantum
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Interference Device (SQUID), working at the temperature of liquid helium (-269 C) (Zimmerman, Thiene,
and Hardings, 1970; Cohen, 1972).

Although David Cohen succeeded to measure the magnetic alpha rhythm with an induction coil
magnetometer (Cohen, 1968), the magnetic signal generated by the electric activity of the brain, measured
in the magnetoencephalogram (MEG), is so low that in practice its detection is possible only by using the
SQUID. With such a device the MEG was first detected by David Cohen in 1970 (Cohen, 1972). John
Wikswo and his co-workers were first to measure the magnetic field of a frog nerve bundle in 1980
(Wikswo, Barach, and Freeman, 1980).

In this connection we want to draw the readers' attention to the fact that the difference between the
measurement principles in the first measurements of the bioelectric and biomagnetic signals is surprisingly
small:

In the first measurement of the bioelectric signal, Matteucci (1838) used a magnetized needle as the
detector. (The bioelectric field is, of course, far too low to deflect the needle of an electroscope.) The
biomagnetic field, produced by the bioelectric currents flowing in the frog leg, was too small to deflect the
magnetic needle directly. It was therefore multiplied by feeding the bioelectric current to a coil of multiple
turns and with placement of the needle inside the coil, an application of the invention of Schweigger
(1821). The effect of the Earth's magnetic field was compensated by winding the coil in the form of a
figure eight, placing two identical magnetic needles on the same suspension and oriented in opposite
directions in the two openings of the coil. This formed an astatic galvanometer, as described earlier.

In the first measurement of a biomagnetic signal (the magnetocardiogram), the magnetic field produced by
the bioelectric currents circulating in the human body was measured with a coil (Baule and McFee, 1963).
Because of the low amplitude of this biomagnetic field, multiple turns of wire had to be wound around the
core of the coil. To compensate for the effect of the magnetic field of the Earth and other sources of
"noise", two identical coils wound in opposite directions were used (Figure 1.19).

Thus, in terms of measurement technology, the first measurements of bioelectric and biomagnetic signals
can be discriminated on the basis of whether the primary loop of the conversion of the bioelectric current to
a magnetic field takes place outside or within the body, respectively. Since the invention of the capillary
electrometer by G. J. Lippman (1873) and especially after the invention of electronic amplifiers, electric
measurements have not directly utilized induced magnetic fields, and therefore the techniques of bioelectric
and biomagnetic measurements have been driven apart.

In terms of measurement theory, the first measurements of bioelectric signals were measurements of the
flow source, and thus truly electric. The first measurement of the biomagnetic signal by Richard McFee
was the measurement of the vortex source, and thus truly magnetic. It will be shown later that with
magnetic detectors it is possible to make a measurement which resembles the detection of the flow source.
However, such a measurment does not give new informaion about the source compared to the electric
measurement.

This example should draw our readers' attention to the fact that from a theoretical point of view, the
essential difference between the bioelectric and biomagnetic measurements lies in the sensitivity
distributions of these methods. Another difference stems from the diverse technical properties of these
instrumentations, which impart to either method specific advantages in certain applications..
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Fig. 1.19. Detection of the first biomagnetic signal, the magnetocardiogram (MCG), by Baule and
McFee. (Redrawn from Baule and McFee, 1963.).

1.4.6 Theoretical Contributions to Bioelectromagnetism

The German scientist and philosopher Hermann Ludwig Ferdinand von Helmholtz (1821-1894) made the
earliest significant contributions of the theory of bioelectromagnetism. A physician by education and, in
1849, appointed professor of physiology at Kdénigsberg, he moved to the chair of physiology at Bonn in
1855. In 1871 he was awarded the chair of physics at the University of Berlin, and in 1888 was also
appointed the first director of Physikalisch-Technische Bundesanstalt in Berlin.

Helmholtz's fundamental experimental and theoretical scientific contributions in the field of
bioelectromagnetism include the following topics, which are included in this book:

1. The demonstration that axons are processes of nerve cell bodies (1842)

2. The establishment of the law of conservation of energy (the First Law of Thermodynamics)
(1847)

3. The invention of the myograph and the first measurement of the conduction velocity of a motor
nerve axon (1850)

4. The concept of double layer source (1853)

5. The solid angle theorem for electric potentials

6. The principle of superposition (1853)

7. The reciprocity theorem (1853)

8. The insolvability of the inverse problem (1853)

9. Helmholtz's theorem concerning the independence of flow and vortex sources

10. The Helmholtz coils (applied in biomagnetic instrumentation)

Besides these, the contributions of Helmholtz to other fields of science include fundamental works in
physiology, acoustics, optics, electrodynamics, thermodynamics, and meteorology. He is the author of the
theory of hearing (1863) from which all modern theories of resonance are derived. He also invented, in
1851, the ophthalmoscope, which is used to investigate the retina of a living eye.

Until the end of the nineteenth century, the physics of electricity was not fully understood. It was known,
however, that neither pure water nor dry salts could by themselves transmit an electric current, whereas in
aqueous solution salts could. Svante August Arrhenius (Swedish; 1859-1927) hypothesized in his (1884)
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doctoral thesis that molecules of some substances dissociate, or split, into two or more particles (ions)
when they are dissolved in a liquid. Although each intact molecule is electrically balanced, the particles
carry an electric charge, either positive or negative depending on the nature of the particle. These charged
bodies form only in solution and permit the passage of electricity. This theory is fundamental for
understanding the nature of the bioelectric current, because it flows in solutions and is carried by ions.
Svante Arrhenius won the Nobel Prize in Chemistry in 1903.

At the end of the nineteenth century, Walther Hermann Nernst (German; 1864-1941) did fundamental work
in thermochemistry, investigating the behavior of electrolytes in the presence of electric currents. In 1889,
he developed a fundamental law, known as the Nernst equation. Nernst also developed many other
fundamental laws, including the Third Law of Thermodynamics. He was awarded the Nobel Prize in
Chemistry in 1920.

Dutch scientists Hermann Carel Burger (1893-1965) and Johan Bernhard van Milaan (1886-1965)
introduced the concept of the lead vector in 1946 (Burger and van Milaan, 1946). They also extended this
to the concept of the image surface. In 1953, Richard McFee and Franklin D. Johnston introduced the
important concept of the lead field, which is based on the reciprocity theorem of Helmholtz (McFee and
Johnston, 1953, 1954ab). The invention of the electromagnetic connection in 1819 by Orsted tied
bioelectric and biomagnetic fields together. The invention of the reciprocity theorem in 1853 by Helmholtz
showed that the sensitivity distribution of a lead for measuring bioelectric sources is the same as the
distribution of stimulation current introduced into the same lead. Furthermore, this is the same as the
sensitivity distribution of a tissue impedance measurement with the same lead. All this is true for
corresponding magnetic methods as well. These principles are easily illustrated with the concept of lead
field.

Dennis Gabor (British; 1900-1979) and Clifford V. Nelson published the Gabor-Nelson theorem in 1954
(Gabor and Nelson, 1954). This theorem explains how an equivalent dipole of a volume source and its
location may be calculated from measurements on the surface of a homogeneous volume conductor.

1.4.7 Summary of the History of Bioelectromagnetism

The history of bioelectromagnetism is summarized chronologically in Figure 1.20. The historical events are
divided into four groups: theory, instrumentation, stimulation, and measurements. This figure should serve
as a useful overview for our readers and help them recognize how one contribution follows from an earlier
one and how the development of an entire discipline thereby takes place. From this figure we may
summarize the following thoughts.

1. Up to the middle of the nineteenth century, the history of electromagnetism has actually also been the
history of bioelectromagnetism. The first electric machines and the Leyden jar were constructed to produce
static electricity for a specific purpose: to "electrify" and to stimulate humans. The Voltaic pile was
developed with the idea of galvanic stimulation. The universal principles of reciprocity and superposition
were introduced in connection with their application to bioelectromagnetism. Bioelectric and biomagnetic
measurements have also been the incentive for the development of sensitive measurement instruments. The
latter include not only the astatic galvanometer, capillary electrometer, and string galvanometer of the
nineteenth century but also the low-voltage cathode ray tube and the SQUID in the twentieth century. An
understanding of the function of nerve cells and brain and their simulation with electronic models has led
to the development of a new generation of computers: the neurocomputer. These events emphasize the
importance of bioelectromagnetism.

2. In the seventeenth and early eighteenth centuries, it is surprising how quickly a new invention in the
field of bioelectromagnetism became the basis for still further applications and new inventions, even in
different countries, although travel and communication were limited to the horse. As examples one may
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mention the invention of the Leyden jar in Germany and the Netherlands in 1745 and 1746, respectively,
and its systematic application to human functional electric stimulation in Italy in 1747. Another example is
the invention of the electromagnetic connection in 1819 in Denmark and the development of the
galvanometer in 1821 in Germany and the astatic galvanometer in 1825 in Italy.

3. On the other hand, some inventions have been rediscovered, having been "forgotten" for about 100
years. Exactly 100 years elapsed following the publication of the reciprocity theorem before the lead field
theory was introduced. The magnetic stimulation of the motor cortex was developed almost 100 years after
the observation of magnetophosphenes. The time span from the first bioelectric measurements to the first
corresponding biomagnetic measurements has been, on average, 100 years - quite a long time!

4. Several fundamental techniques used today in bioelectromagnetic instrumentation date back to the
earliest instruments. The astatic galvanometer of 1825 included an ingenious method of compensation for
the magnetic noise field. This principle was applied to the first measurement of MCG in 1963. Actually the
planar gradiometers, applied in the multichannel MEG-instruments using SQUID, are constructed exactly
according to the same principle as the astatic galvanometer coil was more than 150 years ago. The basic
clinical ECG leads - the limb leads - were invented 100 years ago by Waller. Similarly, Waller also
introduced the dipole model to ECG, and it still has a strong role in electro- and magnetocardiology.

A more detailed review of the history of bioelectromagnetism can be found in the following references:
Brazier (1988), Geddes (1984ab), McNeal (1977), Mottelay (1975), Rautaharju (1987, 1988), Rowbottom
and Susskind (1984), and Wasson (1987)..
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Fig. 1.20. Chronology of the history of bioelectromagnetism. The historical events are divided into
four groups: theory, instrumentation, stimulation, and measurements..
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1.5 NOBEL PRIZES IN BIOELECTROMAGNETISM

The discipline of bioelectromagnetism is strongly reflected in the work of many Nobel laureates. It should
be noted that 16 Nobel prizes have been given for contributions to the discipline of bioelectromagnetism
and closely related subjects. Of these prizes, 12 were in physiology or medicine; four were in chemistry.
Although some perhaps do not directly concern bioelectromagnetism, they are very closely related. Since
several individuals may have shared an award, the actual number of Nobel laureates is 28. The large
number of these Nobel laureates shows that bioelectromagnetism is recognized as a very important
discipline. Nobel laureates associated with bioelectromagnetism are listed in Table 1.6.

One should probably add to this list the names of Gabriel Jonas Lippman and Dennis Gabor, although they
did not receive their Nobel Prize for their work in bioelectromagnetism.

Gabriel Lippman received the Nobel Prize in physics in 1908 for his photographic reproduction of colors.
But he was also the inventor of the capillary electrometer (Lippman, 1873). The capillary electrometer was
a more sensitive measuring instrument than the astatic galvanometer and was an important contribution to
the technology by which bioelectric events were recorded.

Dennis Gabor received the Nobel Prize in physics in 1971 from the invention of holography. He was also
the senior author of the Gabor-Nelson theorem, which is used to ascertain the equivalent dipole of a
volume source by measurements of the electric potential on the surface of the volume conductor (Gabor
and Nelson, 1954).

One should also note that Georg von Békésy received the Nobel Prize for his discoveries of the physical
mechanism of stimulation within the cochlea. His discoveries have, however, contributed most
significantly to the analysis of the relation between the mechanical and the electric phenomena in the
receptors involved in the transformation of sound into nerve impulses. Therefore, von Békésy's name is
included in this list..

Table 1.6 Nobel prizes awarded in bioelectromagnetism and closely related subject areas

Year Name of recipient Nationality Subject of research

1901 Jacobus van't Hoff *) The Netherlands laws of chemical dynamics
and osmotic pressure

1903 Svante Arrhenius *) Sweden theory of electrolytic
dissociation
1906 Camillo Golgi Italy work on the structure of
Santiago Ramon y Cajal Spain nervous system
1920 Walther Nernst *) Germany work in thermochemistry
1924 Willem Einthoven The Netherlands discovery of electro-

cardiogram mechanism
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1932 Edgar Douglas Adrian Britain discoveries regarding

Sir Charles Sherrington Britain function of neurons
1936 Sir Henry Hallet Dale Britain work on chemical trans-
Otto Loewi Germany mission of nerve impulses
1944 Joseph Erlanger u.s. researches on differentiated
Herbert Spencer Gasser u.s. functions of nerve fibers
1949 Walter Rudolf Hess Switzerland discovery of function of
middle brain
1961 Georg von Békésy u.s. discoveries of the physical

mechanism of the inner ear

1963 Sir John Eccles Australia study of the transmission
Alan Lloyd Hodgkin Britain of nerve impulses along a
Andrew Fielding Huxley Britain nerve fibre
1967 Ragnar Arthur Granit Finland discoveries about chemical
Haldan Keffer Hartline u.s. and physiological visual
George Wald u.s. processes in the eye
1968 Lars Onsager *) u.s. work on theory of thermo-
dynamics of irreversible
processes
1970 Julius Axelrod u.s. discoveries concerning the
Sir Bernard Katz Britain chemistry of nerve
Ulf von Euler Sweden transmission
1981 David Hunter Hubel u.s. discoveries concerning
Torsten Nils Wiesel Sweden information processing

in the visual system

1991 Erwin Neher Germany discoveries concerning
Bert Sakmann Germany the function of single
ion channels in cells

1997 Paul D. Boyer u.s. the enzymatic mechanism
John E. Walker U.K. underlying the synthesis of ATP;
Jens C. Skou *) Denmark discovery of an ion-transporting

enzyme, Na+, K+ -ATPase

2003 Peter Agre u.s. discoveries concerning
Roderick MacKinnon *) u.s. channels in cell membranes

59 forras: BioLabor Biofizikai és Laboratoriumi Szolg. Kft. www.biolabor.hu



*) Nobel Prize in chemistry. All other prizes were received in physiology or medicine.
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Anatomical and Physiological
Basis of Bioelectromagnetism

The purpose of Part I is to introduce the anatomy and physiology of excitable tissues and the mechanism
of bioelectric phenomena.
Chapter 2 begins on a cellular level, with a discussion of the anatomy and physiology of nerve and
muscle cells. A discussion of cellular electrophysiology on a gualitative basis follows in this
chapter and then on a quantitative basis in Chapter 3. This chapter explores the bioelectric
behavior of the cell membrane under the firing threshold, and Chapter 4 the activation mechanism.
Biomagnetic phenomena are not yet discussed in Part 1.
Next the anatomy and physiology of excitable tissues at the organ level is briefly reviewed first in
Chapter 5 on neural tissue and then in Chapter 6 on cardiac tissue. Our purpose is to introduce the
necessary vocabulary and to provide an overview of the source of bioelectric phenomena.

Nerve and Muscle Cells

2.1 INTRODUCTION

In this chapter we consider the structure of nerve and muscle tissue and in particular their membranes,
which are excitable. A qualitative description of the activation process follows. Many new terms and
concepts are mentioned only briefly in this chapter but in more detail in the next two chapters, where the
same material is dealt with from a quantitative rather than a qualitative point of view.

The first documented reference to the nervous system is found in ancient Egyptian records. The Edwin
Smith Surgical Papyrus, a copy (dated 1700 B.C.) of a manuscript composed about 3500 B.C., contains the
first use of the word "brain", along with a description of the coverings of the brain which was likened to the
film and corrugations that are seen on the surface of molten copper as it cooled (Elsberg, 1931; Kandel and
Schwartz, 1985).

The basic unit of living tissue is the cell. Cells are specialized in their anatomy and physiology to perform
different tasks. All cells exhibit a voltage difference across the cell membrane. Nerve cells and muscle cells
are excitable. Their cell membrane can produce electrochemical impulses and conduct them along the
membrane. In muscle cells, this electric phenomenon is also associated with the contraction of the cell. In
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other cells, such as gland cells and ciliated cells, it is believed that the membrane voltage is important to
the execution of cell function.

The origin of the membrane voltage is the same in nerve cells as in muscle cells. In both cell types, the
membrane generates an impulse as a consequence of excitation. This impulse propagates in both cell types
in the same manner. What follows is a short introduction to the anatomy and physiology of nerve cells. The
reader can find more detailed information about these questions in other sources such as Berne and Levy
(1988), Ganong (1991), Guyton (1992), Patton et al. (1989) and Ruch and Patton (1982).

2.2 NERVE CELL

2.2.1 The Main Parts of the Nerve Cell

The nerve cell may be divided on the basis of its structure and function into three main parts:
(1) the cell body, also called the soma;
(2) numerous short processes of the soma, called the dendrites; and,

(3) the single long nerve fiber, the axon.

These are described in Figure 2.1.

The body of a nerve cell (see also (Schad¢ and Ford, 1973)) is similar to that of all other cells. The cell
body generally includes the nucleus, mitochondria, endoplasmic reticulum, ribosomes, and other
organelles. Since these are not unique to the nerve cell, they are not discussed further here. Nerve cells are
about 70 - 80% water; the dry material is about 80% protein and 20% lipid. The cell volume varies between
600 and 70,000 pmt. (Schadé and Ford, 1973)

The short processes of the cell body, the dendrites, receive impulses from other cells and transfer them to
the cell body (afferent signals). The effect of these impulses may be excitatory or inhibitory. A cortical
neuron (shown in Figure 2.2) may receive impulses from tens or even hundreds of thousands of neurons
(Nunez, 1981).

The long nerve fiber, the axon, transfers the signal from the cell body to another nerve or to a muscle cell.
Mammalian axons are usually about 1 - 20 pm in diameter. Some axons in larger animals may be several
meters in length. The axon may be covered with an insulating layer called the myelin sheath, which is
formed by Schwann cells (named for the German physiologist Theodor Schwann, 1810-1882, who first
observed the myelin sheath in 1838). The myelin sheath is not continuous but divided into sections,
separated at regular intervals by the nodes of Ranvier (named for the French anatomist Louis Antoine
Ranvier, 1834-1922, who observed them in 1878).
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2.2.2 The Cell Membrane

The cell is enclosed by a cell membrane whose thickness is about 7.5 - 10.0 nm. Its structure and
composition resemble a soap-bubble film (Thompson, 1985), since one of its major constituents, fatty
acids, has that appearance. The fatty acids that constitute most of the cell membrane are called
phosphoglycerides. A phosphoglyceride consists of phosphoric acid and fatty acids called glycerides (see
Figure 2.3). The head of this molecule, the phosphoglyceride, is Aydrophilic (attracted to water). The fatty
acids have tails consisting of hydrocarbon chains which are sydrophobic (repelled by water).

If fatty acid molecules are placed in water, they form little clumps, with the acid heads that are attracted to
water on the outside, and the hydrocarbon tails that are repelled by water on the inside. If these molecules
are very carefully placed on a water surface, they orient themselves so that all acid heads are in the water
and all hydrocarbon tails protrude from it. If another layer of molecules were added and more water put on
top, the hydrocarbon tails would line up with those from the first layer, to form a double (two molecules
thick) layer. The acid heads would protrude into the water on each side and the hydrocarbons would fill the
space between. This bilayer is the basic structure of the cell membrane.

From the bioelectric viewpoint, the ionic channels constitute an important part of the cell membrane. These
are macromolecular pores through which sodium, potassium, and chloride ions flow through the
membrane. The flow of these ions forms the basis of bioelectric phenomena. Figure 2.4 illustrates the
construction of a cell membrane.
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INWATER MOLECULES
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FPHOSFHOLIFID MEMEBRAMNE
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Fig. 2.3. A sketch illustrating how the phosphoglyceride (or phospholipid) molecules behave in
water. See text for discussion.
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Fig. 2.4. The construction of a cell membrane. The main constituents are two lipid layers, with the
hydrophobic tails pointing inside the membrane (away from the aqueous intracellular and
interstitial mediums). The macromolecular pores in the cell membrane form the ionic channels
through which sodium, potassium, and chloride molecules flow through the membrane and
generate the bioelectric phenomena.

2.2.3 The Synapse

The junction between an axon and the next cell with which it communicates is called the synapse.
Information proceeds from the cell body unidirectionally over the synapse, first along the axon and then
across the synapse to the next nerve or muscle cell. The part of the synapse that is on the side of the axon is
called the presynaptic terminal; that part on the side of the adjacent cell is called the postsynaptic terminal.
Between these terminals, there exists a gap, the synaptic cleft, with a thickness of 10 - 50 nm. The fact that
the impulse transfers across the synapse only in one direction, from the presynaptic terminal to the
postsynaptic terminal, is due to the release of a chemical transmitter by the presynaptic cell. This
transmitter, when released, activates the postsynaptic terminal, as shown in Figure 2.5. The synapse
between a motor nerve and the muscle it innervates is called the neuromuscular junction. Information
transfer in the synapse is discussed in more detail in Chapter 5.
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Fig. 2.5. Simplified illustration of the anatomy of the synapse.

A) The synaptic vesicles contain a chemical transmitter.
B) When the activation reaches the presynaptic terminal the transmitter is released and it
diffuses across the synaptic cleft to activate the postsynaptic membrane.

2.3 MUSCLE CELL

There are three types of muscles in the body:
- smooth muscle,

- striated muscle (skeletal muscle), and

- cardiac muscle.

Smooth muscles are involuntary (i.e., they cannot be controlled voluntarily). Their cells have a variable
length but are in the order of 0.1 mm. Smooth muscles exist, for example, in the digestive tract, in the wall
of the trachea, uterus, and bladder. The contraction of smooth muscle is controlled from the brain through
the autonomic nervous system.

Striated muscles, are also called skeletal muscles because of their anatomical location, are formed from a
large number of muscle fibers, that range in length from 1 to 40 mm and in diameter from 0.01 to 0.1 mm.
Each fiber forms a (muscle) cell and is distinguished by the presence of alternating dark and light bands.
This is the origin of the description "striated," as an alternate terminology of skeletal muscle (see Figure
2.6).

The striated muscle fiber corresponds to an (unmyelinated) nerve fiber but is distinguished
electrophysiologically from nerve by the presence of a periodic transverse tubular system (TTS), a complex
structure that, in effect, continues the surface membrane into the interior of the muscle. Propagation of the
impulse over the surface membrane continues radially into the fiber via the TTS, and forms the trigger of
myofibrillar contraction. The presence of the TTS affects conduction of the muscle fiber so that it differs
(although only slightly) from propagation on an (unmyelinated) nerve fiber. Striated muscles are connected
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to the bones via tendons. Such muscles are voluntary and form an essential part of the organ of support and
motion.

Cardiac muscle is also striated, but differs in other ways from skeletal muscle: Not only is it involuntary,
but also when excited, it generates a much longer electric impulse than does skeletal muscle, lasting about
300 ms. Correspondingly, the mechanical contraction also lasts longer. Furthermore, cardiac muscle has a
special property: The electric activity of one muscle cell spreads to all other surrounding muscle cells,
owing to an elaborate system of intercellular junctions.
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Fig. 2.6. Anatomy of striated muscle. The fundamental physiological unit is the fiber.

2.4 BIOELECTRIC FUNCTION OF THE NERVE CELL

The membrane voltage (transmembrane voltage) (V,,) of an excitable cell is defined as the potential at the
inner surface (®;) relative to that at the outer (®,) surface of the membrane, i.e. V,, = (®;) - (D,). This
definition is independent of the cause of the potential, and whether the membrane voltage is constant,
periodic, or nonperiodic in behavior. Fluctuations in the membrane potential may be classified according to
their character in many different ways. Figure 2.7 shows the classification for nerve cells developed by
Theodore Holmes Bullock (1959). According to Bullock, these transmembrane potentials may be resolved
into a resting potential and potential changes due to activity. The latter may be classified into three
different types:

1. Pacemaker potentials: the intrinsic activity of the cell which occurs without external excitation.

2. Transducer potentials across the membrane, due to external events. These include
generator potentials caused by receptors or synaptic potential changes arising at synapses.
Both subtypes can be inhibitory or excitatory.
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3. As a consequence of transducer potentials, further response will arise. If the magnitude
does not exceed the threshold, the response will be nonpropagating (electrotonic). If the
response is great enough, a nerve impulse (action potential impulse) will be produced

which obeys the all-or-nothing law (see below) and proceeds unattenuated along the axon
or fiber.
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Fig. 2.7. Transmembrane potentials according to Theodore H. Bullock.

2.5 EXCITABILITY OF NERVE CELL

If a nerve cell is stimulated, the transmembrane voltage necessarily changes. The stimulation may be

excitatory (i.e., depolarizing; characterized by a change of the potential inside the cell relative to

the outside in the positive direction, and hence by a decrease in the normally negative resting
voltage)

inhibitory (i.e., hyperpolarizing, characterized by a change in the potential inside the cell relative to

or

the outside in the negative direction, and hence by an increase in the magnitude of the membrane
voltage).

After stimulation the membrane voltage returns to its original resting value.

If the membrane stimulus is insufficient to cause the transmembrane potential to reach the threshold, then
the membrane will not activate. The response of the membrane to this kind of stimulus is essentially

passive. Notable research on membrane behavior under subthreshold conditions has been performed by
Lorente de N6 (1947) and Davis and Lorente de N6 (1947).

If the excitatory stimulus is strong enough, the transmembrane potential reaches the threshold, and the
membrane produces a characteristic electric impulse, the nerve impulse. This potential response follows a
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characteristic form regardless of the strength of the transthreshold stimulus. It is said that the action
impulse of an activated membrane follows an all-or-nothing law. An inhibitory stimulus increases the
amount of concurrent excitatory stimulus necessary for achieving the threshold (see Figure 2.8). (The
electric recording of the nerve impulse is called the action potential. If the nerve impulse is recorded
magnetically, it may be called an action current. The terminology is further explicated in Section 2.8 and in

Figure 2.11, below.)
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Fig. 2.8. (A) Experimental arrangement for measuring the response of the membrane potential (B)
to inhibitory (1) and excitatory (2, 3, 4) stimuli (C). The current stimulus (2), while excitatory is,
however, subthreshold, and only a passive response is seen. For the excitatory level (3), threshold
is marginally reached; the membrane is sometimes activated (3b), whereas at other times only a
local response (3a) is seen. For a stimulus (4), which is clearly transthreshold, a nerve impulse is

invariably initiated.

2.6 THE GENERATION OF THE ACTIVATION

The mechanism of the activation is discussed in detail in Chapter 4 in connection with the Hodgkin-Huxley
membrane model. Here the generation of the activation is discussed only in general terms.

The concentration of sodium ions (Na') is about 10 times higher outside the membrane than inside,
whereas the concentration of the potassium (K") ions is about 30 times higher inside as compared to
outside. When the membrane is stimulated so that the transmembrane potential rises about 20 mV and
reaches the threshold - that is, when the membrane voltage changes from -70 mV to about -50 mV (these
are illustrative and common numerical values) - the sodium and potassium ionic permeabilities of the
membrane change. The sodium ion permeability increases very rapidly at first, allowing sodium ions to
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flow from outside to inside, making the inside more positive. The inside reaches a potential of about +20
mV. After that, the more slowly increasing potassium ion permeability allows potassium ions to flow from
inside to outside, thus returning the intracellular potential to its resting value. The maximum excursion of
the membrane voltage during activation is about 100 mV; the duration of the nerve impulse is around 1 ms,
as illustrated in Figure 2.9. While at rest, following activation, the Na-K pump restores the ion
concentrations inside and outside the membrane to their original values.

Vip [MV]
D _

100 L— —{

T N I R e
0 0.5 1.0 Time [ms]

Fig. 2.9. Nerve impulse recorded from a cat motoneuron following a transthreshold stimulus. The
stimulus artifact may be seen at 1 = 0.

2.7 CONCEPTS ASSOCIATED WITH THE ACTIVATION PROCESS

Some basic concepts associated with the activation process are briefly defined in this section. Whether an
excitatory cell is activated depends largely on the strength and duration of the stimulus. The membrane
potential may reach the threshold by a short, strong stimulus or a longer, weaker stimulus. The curve
illustrating this dependence is called the strength-duration curve; a typical relationship between these
variables is illustrated in Figure 2.10. The smallest current adequate to initiate activation is called the
rheobasic current or rheobase. Theoretically, the rheobasic current needs an infinite duration to trigger
activation. The time needed to excite the cell with twice rheobase current is called chronaxy.

Accommodation and habituation denote the adaptation of the cell to a continuing or repetitive stimulus.
This is characterized by a rise in the excitation threshold. Facilitation denotes an increase in the excitability
of the cell; correspondingly, there is a decrease in the threshold. Lafency denotes the delay between two
events. In the present context, it refers to the time between application of a stimulus pulse and the
beginning of the activation. Once activation has been initiated, the membrane is insensitive to new stimuli,
no matter how large the magnitude. This phase is called the absolute refractory period. Near the end of the
activation impulse, the cell may be activated, but only with a stimulus stronger than normal. This phase is
called the relative refractory period.
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The activation process encompasses certain specifics such as currents, potentials, conductivities,
concentrations, ion flows, and so on. The term action impulse describes the whole process. When
activation occurs in a nerve cell, it is called a nerve impulse; correspondingly, in a muscle cell, it is called a
muscle impulse. The bioelectric measurements focus on the electric potential difference across the
membrane; thus the electric measurement of the action impulse is called the action potential that describes
the behavior of the membrane potential during the activation. Consequently, we speak, for instance, of
excitatory postsynaptic potentials (EPSP) and inhibitory postsynaptic potentials (IPSP). In biomagnetic
measurements, it is the electric current that is the source of the magnetic field. Therefore, it is logical to use
the term action current to refer to the source of the biomagnetic signal during the action impulse. These

terms are further illustrated in Figure 2.11.

A V. [mV]
+20

-20 I'I \ III | |
I| .I A . II '-IIII | | ',

[ -I I \ '.
| | Threshold potential

-40- |
I |
Vin |---nn---- FATT Pt e St A
-60 [/ = \
[ A 7 'l \
'III.'.. ’ ":;K I\-\.
-80- f/ Resting potential

Strength-duration curve

\ 2 X Rheobase

[

Chronaxy

Fig. 2.10. (A) The response of the membrane to various stimuli of changing strength (B), the
strength-duration curve. The level of current strength which will just elicit activation after a very
forras: BioLabor Biofizikai és Laboratoriumi Szolg. Kft. www.biolabor.hu

73



long stimulus is called rheobase. The minimum time required for a stimulus pulse twice the
rheobase in strength to trigger activation is called chronaxy. (For simplicity, here, threshold is
shown to be independent on stimulus duration.)

A BASED ON THE SOURCE B BASED ON THE RECORDINGS

MERVE IMFPULSE ACTION POTEMTIAL

Fig. 2.11. Clarification of the terminology used in connection with the action impulse:

A) The source of the action impulse may be nerve or muscle cell. Correspondingly it is called a
nerve impulse or a muscle impulse.

B) The electric quantity measured from the action impulse may be potential or current.
Correspondingly the recording is called an action potential or an action current.

2.8 CONDUCTION OF THE NERVE IMPULSE IN AN AXON

Ludvig Hermann (1872, 1905) correctly proposed that the activation propagates in an axon as an
unattenuated nerve impulse. He suggested that the potential difference between excited and unexcited
regions of an axon would cause small currents, now called local circuit currents, to flow between them in
such a direction that they stimulate the unexcited region.

Although excitatory inputs may be seen in the dendrites and/or soma, activation originates normally only in
the soma. Activation in the form of the nerve impulse (action potential) is first seen in the root of the axon -
the initial segment of the axon, often called the axon hillock. From there it propagates along the axon. If
excitation is initiated artificially somewhere along the axon, propagation then takes place in both directions
from the stimulus site. The conduction velocity depends on the electric properties and the geometry of the
axon.

An important physical property of the membrane is the change in sodium conductance due to activation.
The higher the maximum value achieved by the sodium conductance, the higher the maximum value of the
sodium ion current and the higher the rate of change in the membrane voltage. The result is a higher
gradient of voltage, increased local currents, faster excitation, and increased conduction velocity. The
decrease in the threshold potential facilitates the triggering of the activation process.
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The capacitance of the membrane per unit length determines the amount of charge required to achieve a
certain potential and therefore affects the time needed to reach the threshold. Large capacitance values,
with other parameters remaining the same, mean a slower conduction velocity.

The velocity also depends on the resistivity of the medium inside and outside the membrane since these
also affect the depolarization time constant. The smaller the resistance, the smaller the time constant and
the faster the conduction velocity. The temperature greatly affects the time constant of the sodium
conductance; a decrease in temperature decreases the conduction velocity.

The above effects are reflected in an expression derived by Muler and Markin (1978) using an idealized
nonlinear ionic current function. For the velocity of the propagating nerve impulse in unmyelinated axon,
they obtained

where v = velocity of the nerve impulse [m/s]
ina max = Maximum sodium current per unit length [A/m]
Vi =threshold voltage [V]
r = axial resistance per unit length [Q/m]

¢n = membrane capacitance per unit length [F/m]

A myelinated axon (surrounded by the myelin sheath) can produce a nerve impulse only at the
nodes of Ranvier. In these axons the nerve impulse propagates from one node to another, as
illustrated in Figure 2.12. Such a propagation is called saltatory conduction (saltare, "to dance" in
Latin).

The membrane capacitance per unit length of a myelinated axon is much smaller than in an unmyelinated
axon. Therefore, the myelin sheath increases the conduction velocity. The resistance of the axoplasm per
unit length is inversely proportional to the cross-sectional area of the axon and thus to the square of the
diameter. The membrane capacitance per unit length is directly proportional to the diameter. Because the
time constant formed from the product controls the nodal transmembrane potential, it is reasonable to
suppose that the velocity would be inversely proportional to the time constant. On this basis the conduction
velocity of the myelinated axon should be directly proportional to the diameter of the axon. This is
confirmed in Figure 2.13, which shows the conduction velocity in mammalian myelinated axons as linearly
dependent on the diameter. The conduction velocity in myelinated axon has the approximate value shown:

v=6d
where v = velocity [m/s]

d = axon diameter [um]
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Fig. 2.12. Conduction of a nerve impulse in a nerve axon.
(A) continuous conduction in an unmyelinated axon;
(B) saltatory conduction in a myelinated axon.
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Fig. 2.13. Experimentally determined conduction velocity of a nerve impulse in a mammalian
myelinated axon as a function of the diameter. (Adapted from Ruch and Patton, 1982.)

76 forras: BioLabor Biofizikai és Laboratoriumi Szolg. Kft. www.biolabor.hu



REFERENCES

Berne RM, Levy MN (1993): Physiology, 3rd ed., 1091 pp. C. V. Mosby, St. Louis.
Bullock TH (1959): Neuron doctrine and electrophysiology. Science 129:(3355) 997-1002.

Davis LJ, Lorente de N6 R (1947): Contributions to the mathematical theory of the electrotonus. Stud. Rockefeller
Inst. Med. Res. 131: 442-96.

Elsberg CA (1931): The Edwin Smith surgical papyrus. Ann. Med. Hist. 3: 271-9.
Ganong WF (1991): Review of Medical Physiology, 15th ed., Appleton & Lange, Norwalk, Conn.
Guyton AC (1992): Human Physiology and Mechanisms of Disease, 5th ed., 690 pp. Saunders, Philadelphia.

Hermann L (1872): Grundriss der Physiologie, 4th ed., (Quoted in L Hermann (1899): Zur Theorie der
Erregungsleitung und der elektrischen Erregung. Pfliiger Arch. ges. Physiol. 75: 574-90.)

Hermann L (1905): Lehrbuch der Physiologie, 13th ed., 762 pp. August Hirschwald, Berlin.

Kandel ER, Schwartz JH (1985): Principles of Neural Science, Elsevier Publishing, New York.

Lorente de N6 R (1947): 4 Study of Nerve Physiology, 293 pp. Rockefeller Institute for Medical Research, New York.

Muler AL, Markin VS (1978): Electrical properties of anisotropic nerve-muscle syncytia - II. Spread of flat front of
excitation. Biophys. 22: 536-41.

Nunez PL (1981): Electric Fields of the Brain: The Neurophysics of EEG, 484 pp. Oxford University Press, New
York.

Patton HD, Fuchs AF, Hille B, Scher AM, Steiner R (eds.) (1989): Textbook of Physiology, 21st ed., 1596 pp. W. B.
Saunders, Philadelphia.

Ruch TC, Patton HD (eds.) (1982): Physiology and Biophysics, 20th ed., 1242 pp. W. B. Saunders, Philadelphia.
Schadé JP, Ford DH (1973): Basic Neurology, 2nd ed., 269 pp. Elsevier Scientific Publishing, Amsterdam.
Thompson CF (1985): The Brain - An Introduction to Neuroscience, 363 pp. W. H. Freeman, New York.
http://www.bem.fi/book/02/02.htm

77 forras: BioLabor Biofizikai és Laboratoriumi Szolg. Kft. www.biolabor.hu



Subthreshold membrane phenomena

3.1 INTRODUCTION

In the previous chapter the subthreshold behavior of the nerve cell was discussed qualitatively. This
chapter describes the physiological basis of the resting voltage and the subthreshold response of an axon
to electric stimuli from a quantitative perspective.

The membrane plays an important role in establishing the resting and active electric properties of an
excitable cell, through its regulation of the movement of ions between the extracellular and intracellular
spaces. The word ion (Greek for "that which goes") was introduced by Faraday (1834). The ease with
which an ion crosses the membrane, namely the membrane permeability, differs among ion species; this
selective permeability will be seen to have important physiological consequences. Activation of a cell
affects its behavior by altering these permeabilities. Another important consideration for transmembrane
ion movement is the fact that the ionic composition inside the cell differs greatly from that outside the cell.
Consequently, concentration gradients exist for all permeable ions that contribute to the net ion movement
or flux. The principle whereby ions flow from regions of high to low concentration is called diffusion.

One consequence of this ion flow is the tendency for ions to accumulate at the inner and outer membrane
surfaces, a process by which an electric field is established within the membrane. This field exerts forces
on the ions crossing the membrane since the latter carry an electric charge. Thus to describe membrane ion
movements, electric-field forces as well as diffusional forces should be considered. Equilibrium is attained
when the diffusional force balances the electric field force for all permeable ions.

For a membrane that is permeable to only one type of ion, equilibrium requires that the force due to the
electric field be equal and opposite to the force due to diffusion. In the next section we shall explore the
Nernst equation, which expresses the equilibrium voltage associated with a given concentration ratio.
Equilibrium can also be defined by equating the electrochemical potential on both sides of the membrane.

The Nernst equation is derived from two basic concepts involving ionic flow - those resulting from an
electric field force and those resulting from a diffusional force. A more rigorous thermodynamic treatment
is available, and the interested reader should consult references such as van Rysselberghe (1963) and
Katchalsky and Curran (1965).

We shall also derive the Goldman-Hodgkin-Katz equation, which gives the steady-state value of the
membrane voltage when there are several types of ions in the intracellular and extracellular media, and
when the membrane is permeable to all of them. As will be seen, the Goldman-Hodgkin-Katz equation is a
straightforward extension of the Nernst equation.

A more detailed discussion of physical chemistry, which contributes to many topics in this chapter, can be
found in standard textbooks such as Edsall and Wyman (1958) and Moore (1972).
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3.2 NERNST EQUATION

3.2.1 Electric Potential and Electric Field

In electrostatics the electric potential @ at point P is defined as the work required to move a unit positive
charge from a reference position O to position P. If the reference potential is @¢ and the potential at point P
designated ®p, then the work W, required to move a quantity of charge O from point O to point P is simply
We = Q(®s - Do) (3.1)

where W, = work [J/mol]

Q = charge [C] (coulombs)

® = potential [V]
In electrophysiological problems the quantity of ions is usually expressed in moles. (One mole
equals the molecular weight in grams-hence 6.0225 x 101, Avogadro's number of molecules.) If

one mole of an ion is transferred from a reference point O at potential @¢ to an arbitrary point P at
potential @p, then from Equation 3.1 the required work is

W, = zF(Ds - Do) (3.2)
where W, = work [J/mol]
z =valence of the ions
F  =Faraday's constant [9.649 x 10" C/mol]
® = potential [V]
Faraday's constant converts quantity of moles to quantity of charge for a univalent ion. The factor
z, called valence, takes into account multivalent ions and also introduces the sign. Note that if ®@p -

@ and z are both positive (i.e., the case where a positive charge is moved from a lower to higher
potential), then work must be done, and W% is positive as expected.

The electric field is defined by the force that it exerts on a unit charge. If a unit positive charge is moved
from reference point O to a nearby point P, where the corresponding vector displacement is ds, then the
work done aguainst the electric field force &, according to the basic laws of mechanics, is the work dW
given by

AW =—FEeds (3.3)

Applying Equation 3.1 to Equation 3.3 (replacing Q by unity) gives:

©,- P, =dW =—Eeds (3.4)
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The Taylor series expansion of the scalar field about the point O and along the path s is:

®p = O dO/ds + -

Since P is very close to O, the remaining higher terms may be neglected in Equation 3.5. The
second term on the right-hand side of Equation 3.5 is known as the directional derivative of @ in
the direction s. The latter, by the vector-analytic properties of the gradient, is given by Vil a4 s,
Consequently, Equation 3.5 may be written as

®,-P,=Vdeds

From Equations 3.4 and 3.6 we deduce that

E=-VO
This relationship is valid not only for electrostatics but also for electrophysiological problems
since quasistatic conditions are known to apply to the latter (see Section 8.2.2).

According to Ohm's law, current density J and electric field F are related by

J=gE=—0cV®d

where ¢ is the conductivity of the medium. This current, for obvious reasons, is called a
conduction current.

We are interested mainly in those charged particles that arise from ionization in an electrolyte and, in
particular, in those ions present in the intracellular and extracellular spaces in electrically excitable tissues.
Because of their charges, these ions are subject to the electric field forces summarized above. The flux (i.e.,
flow per unit area per unit time) that results from the presence of an electric field depends on the electric

resistance, which, in turn, is a function of the ionic mobility of the ionic species. The latter is defined by
uk, the velocity that would be achieved by the kth ion in a unit electric field. Then the ionic flux is given by

where }ke = jonic flux (due to electric field) [mol/(cm_:s)]
U, = ionic mobility [cm /(V-s)]
zx = valence of the ion

¢y = ionic concentration [mol/cmt]

and further:

80 forras: BioLabor Biofizikai és Laboratoriumi Szolg. Kft. www.biolabor.hu

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)



z

—| k| = the sign of the force (positive for cations and negative for anions)

=
&

Z;  the mean velocity achieved by these ions in a unit electric field (according to the definition

k -_ =
|Zx| of uy)

the subscript k denotes the k" ion.

Multiplying ionic concentration ci by velocity gives the ionic flux. A comparison of Equation 3.8
with Equation 3.9 shows that the mobility is proportional to the conductivity of the K™ jon in the
electrolyte. The ionic mobility depends on the viscosity of the solvent and the size and charge of
the ion.

3.2.2 Diffusion

If a particular ionic concentration is not uniform in a compartment, redistribution occurs that ultimately
results in a uniform concentration. To accomplish this, flow must necessarily take place from high- to low-
density regions. This process is called diffusion, and its quantitative description is expressed by Fick's law
(Fick, 1855). For the k™ ion species, this is expressed as

Jp=—DYe, (3.10)
where }kD = jonic flux (due to diffusion) [mol/(cm_-s)]

Dy = Fick's constant (diffusion constant) [cm_/s]

¢y = ion concentration [mol/cmt]

This equation describes flux in the direction of decreasing concentration (accounting for the
minus sign), as expected.

Fick's constant relates the "force" due to diffusion (i.e., -% ¢y ) to the consequent flux of the kth substance.
In a similar way the mobility couples the electric field force (-% @) to the resulting ionic flux. Since in each
case the flux is limited by the same factors (collision with solvent molecules), a connection between u, and
Dy should exist. This relationship was worked out by Nernst (1889) and Einstein (1905) and is

Dy = (3.11)

where T =absolute temperature [K]

R = gas constant [8.314 J/(mol-K)]
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3.2.3 Nernst-Planck Equation

The total ionic flux for the k™ ion, ./, is given by the sum of ionic fluxes due to diffusion and electric field
of Equations 3.10 and 3.9. Using the Einstein relationship of Equation 3.11, it can be expressed as

- - — crzr B
= dept g = Dy | Vo +-2E
T = JkD T Jhe k( [ T

‘F@J (3.12)

Equation 3.12 is known as the Nernst-Planck equation (after Nernst, 1888, 1889; Planck, 1890ab).
It describes the flux of the X" ion under the influence of both a concentration gradient and an
electric field. Its dimension depends on those used to express the ionic concentration and the
velocity. Normally the units are expressed as [mol/(cm_-s)].

The ionic flux fcan be converted into an electric current density jby multiplying the former by zF, the
number of charges carried by each mole (expressed in coulombs, [C]). The result is, for the k™ ion,

- ooz B
Ji =0z F| Vo, + 52K
.ﬁ:k( i RT

‘F@J (3.13)

where }k = electric current density due to the k™ ion [C/(s:cm,)] = [A/cm ]

Using Equation 3.11, Equation 3.13 may be rewritten as

Tk = —[ukRT%TCR +eipcy |25 [F ?CD] (3.14)
Zie

3.2.4 Nernst Potential

Figure 3.1 depicts a small portion of a cell membrane of an excitable cell (i.e., a nerve or muscle cell). The
membrane element shown is described as a patch. The significant ions are potassium (K"), sodium (Na"),
and chloride (CI'), but we shall assume that the membrane is permeable only to one of them (potassium)
which we denote as the k™ ion, to allow later generalization. The ion concentrations on each side of the
membrane are also illustrated schematically in Figure 3.1. At the sides of the figure, the sizes of the
symbols are given in proportion to the corresponding ion concentrations. The ions are shown to cross the
membrane through channels, as noted above. The number of ions flowing through an open channel may be
more than 10° per second.
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INTRACELLULAR MEDIUM

- +
<+ CIT Na
EXTRACELLULAR MEDIUM

Fig. 3.1. A patch of membrane of an excitable cell at rest with part of the surrounding
intracellular and extracellular media. The main ions capable of transmembrane flow are
potassium (K"), sodium (Na"), and chloride (CI'). The intracellular ionic composition and
extracellular ionic composition are unequal. At the sides of the figure, the sizes of the
symbols reflect the proportions of the corresponding ion concentration. The intracellular
anion (A’) is important to the achievement of electroneutrality; however, A™ is derived
from large immobile and impermeable molecules (KA), and thus A- does not contribute to
ionic flow. At rest, the membrane behaves as if it were permeable only to potassium. The
ratio of intracellular to extracellular potassium concentration is in the range 30-50:1. (The
ions and the membrane not shown in scale.)

It turns out that this is a reasonable approximation to actual conditions at rest. The concentration of
potassium is normally around 30 - 50 times greater in the intracellular space compared to the extracellular.
As a consequence, potassium ions diffuse outward across the cell membrane, leaving behind an equal
number of negative ions (mainly chloride). Because of the strong electrostatic attraction, as the potassium
efflux takes place, the potassium ions accumulate on the outside of the membrane. Simultaneously, (an
equal number of) chloride ions (left behind from the KCI) accumulate on the inside of the membrane. In
effect, the membrane capacitance is in the process of charging, and an electric field directed inward
increasingly develops in proportion to the net potassium efflux.

The process described above does not continue indefinitely because the increasing electric field forms a
force on the permeable potassium ion that is directed inward and, hence, opposite to the diffusional force.
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An equilibrium is reached when the two forces are equal in magnitude. The number of the potassium ions
required to cross the membrane to bring this about is ordinarily extremely small compared to the number
available. Therefore, in the above process for all practical purposes we may consider the intracellular and
extracellular concentrations of the potassium ion as unchanging throughout the transient. The
transmembrane potential achieved at equilibrium is simply the equilibrium potential.

A quantitative relationship between the potassium ion concentrations and the aforementioned equilibrium
potential can be derived from the Nernst-Planck equation. To generalize the result, we denote the
potassium ion as the k™ ion. Applying Equation 3.13 to the membrane at equilibrium we must satisfy a
condition of zero current so that

- CkaF
Jrp=0==-z.F| Ve, + W
=l ( k RT ]

where the subscript & refers to an arbitrary K™ jon. Transposing terms in Equation 3.15 gives

Eksz

Yoy = v

Since the membrane is extremely thin, we can consider any small patch as planar and describe
variations across it as one-dimensional (along a normal to the membrane). If we call this direction
x, we may write out Equation 3.16 as

F
v%:—cgﬁ Vo

Equation 3.17 can be rearranged to give

of F
S __ZE g
g ET

Equation 3.18 may now be integrated from the intracellular space (i) to the extracellular space (0);
that is:

Odck ___ZkF
!?;_ iEjmi

Carrying out the integrations in Equation 3.19 gives

ln “ok =- Z—kF

B - D,
ik RT(D i)
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where cjx and c,x denote the intracellular and extracellular concentrations of the K ion,
respectively. The equilibrium voltage across the membrane for the &A™ ion is, by convention, the
intracellular minus the extracellular potential (Vi = @; - ®@,), hence:

ET. &
Vj, = ——In
EkF co,k

where V| = equilibrium voltage for the k™ ion across the membrane O, - @, i.e., the Nernst voltage [V]
R =gas constant [8.314 J/(mol-K)]
T = absolute temperature [K]
z« =valence of the k" ion
F = Faraday's constant [9.649 x 104 C/mol]
¢ix = intracellular concentration of the kth ion

Cox = extracellular concentration of the kth ion

Equation 3.21 is the famous Nernst equation derived by Walther Hermann Nernst in 1888 (Nernst,
1888). By Substituting 37 °C which gives 7= 273 + 37 and +1 for the valence, and by replacing
the natural logarithm (the Napier logarithm) with the decadic logarithm (the Briggs logarithm),
one may write the Nernst equation for a monovalent cation as:

V=-61logyg—[mV]
A

Q

At room temperature (20 °C), the coefficient in Equation 3.22 has the value of 58; at the
temperature of seawater (6 °C), it is 55. The latter is important when considering the squid axon.

Example

We discuss the subject of equilibrium further by means of the example described in Figure 3.2, depicting
an axon lying in a cylindrical experimental chamber. The potential inside the axon may be changed with
three interchangeable batteries (A, B, and C) which may be placed between the intracellular and
extracellular spaces. We assume that the intracellular and the extracellular spaces can be considered
isopotential so that the transmembrane voltage V,, (difference of potential across the membrane) is the
same everywhere. (This technique is called voltage clamp, and explained in more detail in Section 4.2.)
Furthermore, the membrane is assumed to be permeable only to potassium ions. The intracellular and
extracellular concentrations of potassium are c;k and c,k, respectively. In the resting state, the membrane
voltage Vi, (= ®; - @,) equals V, the Nernst voltage for K™ ions according to Equation 3.21.

In Figure 3.2 the vertical axis indicates the potential ®, and the horizontal axis the radial distance r
measured from the center of the axon. The membrane is located between the radial distance values r; and
r,. The length of the arrows indicates the magnitude of the voltage (inside potential minus outside
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potential). Their direction indicates the polarity so that upward arrows represent negative, and downward
arrows positive voltages (because all the potential differences in this example are measured from negative
potentials). Therefore, when AV is positive (downward), the transmembrane current (for a positive ion) is
also positive (i.e., outward).

A. Suppose that the electromotive force emf of the battery A equals V. In this case V,, = Vi and the
condition corresponds precisely to the one where equilibrium between diffusion and electric field forces is
achieved. Under this condition no net flow of potassium ions exists through the membrane (see Figure
3.2A). (The flow through the membrane consists only of diffusional flow in both directions.)

B. Suppose, now, that the voltage of battery B is smaller than Vi (|V, < Vk|). Then the potential inside the
membrane becomes less negative, a condition known as depolarization of the membrane. Now the electric
field is no longer adequate to equilibrate the diffusional forces. This imbalance is AV = V,, - Vx and an
outflow of potassium (from a higher electrochemical potential to a lower one) results. This condition is
illustrated in Figure 3.2B.

C. If, on the other hand, battery C is selected so that the potential inside the membrane becomes more
negative than in the resting state (|V,| > |Vk|), then the membrane is said to be hyperpolarized. In this case
ions will flow inward (again from the higher electrochemical potential to the lower one). This condition is
described in Figure 3.2C.

Internal electrode
AXon

« Experimental chamber

iz B DEFOLARIZED |V,| = |V

T F.F
'\T E%—l AY

Ciutfioen of K* ions

EQUILIBRIUM  V,, = V

m
#I D, r D, .
i l i
vl v, AV=0 Vi || Vi

Met flow of K jions = 0

[nflow of K*ions

ETr, &GF
Mernst voltage for K+ ions:  Fp =———In L

o e K
Force moving K ions: AV =V -V,

Fig. 3.2. An example illustrating the Nernst equation and ion flow through the membrane
in
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(A) equilibrium at rest,
(B) depolarized membrane, and
(C) hyperpolarized membrane.

The diffusional force arising from the concentration gradient is equal and opposite to the equilibrium
electric field Vx which, in turn, is calculated from the Nernst potential (see Equation 3.21). The Nernst
electric field force Vi is described by the open arrow. The thin arrow describes the actual electric field V,,
across the membrane that is imposed when the battery performs a voltage clamp (see Section 4.2 for the
description of voltage clamp). The bold arrow is the net electric field driving force AV in the membrane
resulting from the difference between the actual electric field (thin arrow) and the equilibrium electric field
(open arrow).

3.3 ORIGIN OF THE RESTING VOLTAGE

The resting voltage of a nerve cell denotes the value of the membrane voltage (difference between the potential
inside and outside the membrane) when the neuron is in the resting state in its natural, physiological environment.
It should be emphasized that the resting state is not a passive state but a stable active state that needs metabolic
energy to be maintained. Julius Bernstein, the founder of membrane theory, proposed a very simple hypothesis on
the origin of the resting voltage, depicted in Figure 3.3 (Bernstein, 1902; 1912). His hypothesis is based on
experiments performed on the axon of a squid, in which the intracellular ion concentrations are, for potassium, c;k
=400 mol/mt; and, for sodium, c;n, = 50 mol/mt. It is presumed that the membrane is permeable to potassium ions
but fully impermeable to sodium ions.

The axon is first placed in a solution whose ion concentrations are the same as inside the axon. In such a
case the presence of the membrane does not lead to the development of a difference of potential between
the inside and outside of the cell, and thus the membrane voltage is zero.

The axon is then moved to seawater, where the potassium ion concentration is ¢,x = 20 mol/ml and the
sodium ion concentration is ¢, n, = 440 mol/mt. Now a concentration gradient exists for both types of ions,
causing them to move from the region of higher concentration to the region of lower concentration.
However, because the membrane is assumed to be impermeable to sodium ions, despite the concentration
gradient, they cannot move through the membrane. The potassium ions, on the other hand, flow from inside
to outside. Since they carry a positive charge, the inside becomes more negative relative to the outside. The
flow continues until the membrane voltage reaches the corresponding potassium Nernst voltage - that is,
when the electric and diffusion gradients are equal (and opposite) and equilibrium is achieved. At
equilibrium the membrane voltage is calculated from the Nernst equation (Equation 3.21).

The hypothesis of Bernstein is, however, incomplete, because the membrane is not fully impermeable to
sodium ions. Instead, particularly as a result of the high electrochemical gradient, some sodium ions flow
to the inside of the membrane. Correspondingly, potassium ions flow, as described previously, to the
outside of the membrane. Because the potassium and sodium Nernst voltages are unequal, there is no
membrane voltage that will equilibrate both ion fluxes. Consequently, the membrane voltage at rest is
merely the value for which a steady-state is achieved (i.e.,where the sodium influx and potassium efflux are
equal). The steady resting sodium influx and potassium efflux would eventually modify the resting
intracellular concentrations and affect the homeostatic conditions; however, the Na-K pump, mentioned
before, transfers the sodium ions back outside the membrane and potassium ions back inside the
membrane, thus keeping the ionic concentrations stable. The pump obtains its energy from the metabolism
of the cell..
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Vo, =0 Vi, = Inside negative
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Fig. 3.3. The origin of the resting voltage according to Julius Bernstein.

3.4 MEMBRANE WITH MULTI-ION PERMEABILITY

3.4.1 Donnan Equilibrium

The assumption that biological membranes are permeable to a single ion only is not valid, and even low
permeabilities may have an important effect. We shall assume that when several permeable ions are
present, the flux of each is independent of the others (an assumption known as the independence principle
and formulated by Hodgkin and Huxley (1952a)). This assumption is supported by many experiments.

The biological membrane patch can be represented by the model drawn in Figure 3.4, which takes into
account the primary ions potassium, sodium, and chloride. If the membrane potential is V,, and since Vj is
the equilibrium potential for the ™ ion, then (V,, - Vi) evaluates the net driving force on the k™ ion.
Considering potassium (K), for example, the net driving force is given by (V,, - Vk); here we can recognize
that V;, represents the electric force and Vy the diffusional force (in electric terms) on potassium. When V,
= Jk ,the net force is zero and there is no flux since the potential is the same as the potassium equilibrium
potential. The reader should recall, that Vk is negative; thus if V, - Vi is positive, the electric field force is
less than the diffusional force, and a potassium efflux (a positive transmembrane current) results, as
explained in the example given in Section 3.2.4.

The unequal intracellular and extracellular composition arises from active transport (Na-K pump) which
maintains this imbalance (and about which more will be said later). We shall see that despite the membrane
ion flux, the pump will always act to restore normal ionic composition. Nevertheless, it is of some interest
to consider the end result if the pump is disabled (a consequence of ischemia, perhaps). In this case, very
large ion movements will ultimately take place, resulting in changed ionic concentrations. When
equilibrium is reached, every ion is at its Nernst potential which, of course, is also the common
transmembrane potential. In fact, in view of this common potential, the required equilibrium concentration
ratios must satisfy Equation 3.23 (derived from Equation 3.21)

C.-.:',K _ Ea,f\b _ Cz',lf'I

Cz',K cz',M: Co, [
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Note that Equation 3.23 reflects the fact that all ions are univalent and that chloride is negative.
The condition represented by Equation 3.23 is that a/l ions are in equilibrium; it is referred to as
the Donnan equilibrium.

@, Intracellular mecdium
Vi, = B, - &, l I
| % } & |4 |1
 — Cm GNa / GH GL
+ I'-"'IINa - Il"'IIH_' - I'."'IIL
— + +
T, Extracellular medium

Fig. 3.4. An electric circuit representation of a membrane patch. In this diagram, Vy,, Vk,
and V. represent the absolute values of the respective emf's and the signs indicate their
directions when the extracellular medium has a normal composition (high Na and CI, and
low K, concentrations).

3.4.2 The Value of the Resting Voltage, Goldman-Hodgkin-Katz Equation

The relationship between membrane voltage and ionic flux is of great importance. Research on this
relationship makes several assumptions: first, that the biological membrane is homogeneous and neutral
(like very thin glass); and second, that the intracellular and extracellular regions are completely uniform
and unchanging. Such a model is described as an electrodiffusion model. Among these models is that by
Goldman-Hodgkin-Katz which is described in this section.

In view of the very small thickness of a biological membrane as compared to its lateral extent, we may treat
any element of membrane under consideration as planar. The Goldman-Hodgkin-Katz model assumes, in
fact, that the membrane is uniform, planar, and infinite in its lateral extent. If the x-axis is chosen normal to
the membrane with its origin at the interface of the membrane with the extracellular region, and if the
membrane thickness is 4, then x = & defines the interface of the membrane with the intracellular space.
Because of the assumed lateral uniformity, variations of the potential field ® and ionic concentration ¢
within the membrane are functions of x only. The basic assumption underlying the Goldman-Hodgkin-Katz
model is that the field within the membrane is constant; hence

m

i ©,-%y
dx  h  h
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where @, = potential at the outer membrane surface
@, = potential at the inner membrane surface
Vn = transmembrane voltage

h = membrane thickness

This approximation was originally introduced by David Goldman (1943).

The Nernst equation evaluates the equilibrium value of the membrane voltage when the membrane is
permeable to only one kind of ion or when all permeable ions have reached a Donnan equilibrium. Under
physiological conditions, such an equilibrium is not achieved as can be verified with examples such as
Table 3.1. To determine the membrane voltage when there are several types of ions in the intra- and
extracellular media, to which the membrane may be permeable, an extended version of the Nernst equation
must be used. This is the particular application of the Goldman-Hodgkin-Katz equation whose derivation
we will now describe.

For the membrane introduced above, in view of its one dimensionality, we have VI =dd/dx ,

?C.i: = .:fck {dx , and, using Equation 3.12, we get

. Efri'k CkaF EI":I:'
- + 325
7k ”“( dx | RT .:fx] (3:29)

for the &A™ jon flux. If we now insert the constant field approximation of Equation 3.24 (d®/d, =
Vw/h) the result is

Efl:'k _ jk _VmZkF
dx D, RTh

Ch (3.26)

(To differentiate ionic concentration within the membrane from that outside the membrane (i.e.,
inside versus outside the membrane), we use the symbol ¢™ in the following where intramembrane
concentrations are indicated.) Rearranging Equation 3.26 gives the following differential equation:

m
cff,'k :dx
_Jx _ VmzFep (3.27)
Dy RTh

We now integrate Equation 3.27 within the membrane from the left-hand edge (x = 0) to the right-
hand edge (x = 7). We assume the existence of resting conditions; hence each ion flux must be in
steady state and therefore uniform with respect to x. Furthermore, for V;, to remain constant, the
total transmembrane electric current must be zero. From the first condition we require that jx(x) be
a constant; hence on the left-hand side of Equation 3.27, only ¢"(x) is a function of x. The result
of the integration is then
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RTh , | RTh * D

- 7 2T In MCD N T =k (3.28)
ETE Iy
where ¢ = concentration of the k™ ion at x = h
¢ = concentration of the k" ionatx=0
Both variables are defined within the membrane.
Equation 3.28 can be solved for ji, giving
o= DV F _ cﬁ - c;DCQ—sztF BT (3.29)

ETh 1_E—szkFIRT

The concentrations of the ™ ion in Equation 3.29 are those within the membrane. However, the
known concentrations are those in the intracellular and extracellular (bulk) spaces. Now the
concentration ratio from just outside to just inside the membrane is described by a partition
coefficient, B. These are assumed to be the same at both the intracellular and extracellular
interface. Consequently, since x = 0 is at the extracellular surface and x = % the intracellular
interface, we have

L]
or = iy
o (3.30)
ot = Fito
where B = partition coefficient
¢; = measurable intracellular ionic concentration
€, = measurable extracellular ionic concentration
The electric current density Ji can be obtained by multiplying the ionic flux j, from Equation 3.29 by
Faraday's constant and valence. If, in addition, the permeability Py is defined as
',
B, = e O (3.31)
h
then
2102 -F,mFIRT
._.Fk __ PkaZkF . L8 Bl AP (3.32)

BT 1_€‘sza‘:F’rRT

When considering the ion flux through the membrane at the resting state, the sum of all currents through
the membrane is necessarily zero, as noted above. The main contributors to the electric current are
potassium, sodium, and chloride ions. So we may write
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By substituting Equation 3.32 into Equation 3.33, appending the appropriate indices, and noting that for
potassium and sodium the valence z = +1 whereas for chloride z = -1, and canceling the constant z; F /RT,
we obtain:

-V, FRT -V, FRT -V, F/RT
~B S K T CaKE ~ By i Ha ~ Co,Ha® _p Sy T e (3.34)
|—pVuFRT 2 |— o VauFRT 1 |—p—VmF/RT

In Equation 3.34 the expression for sodium ion current is seen to be similar to that for potassium
(except for exchanging Na for K); however, the expression for chloride requires, in addition, a
change in sign in the exponential term, a reflection of the negative valence.

The denominator can be eliminated from Equation 3.34 by first multiplying the numerator and denominator
of the last term by factor -e™*™®" and then multiplying term by term by 1 - e*"™®T. Thus we obtain

¥, FERT ¥, F/RT _F,F/RT
Feleix —eope ™ |+ Bralcima—conage ™ J+ Foylesc1—cocie ™ |=0 (3.35)

Multiplying through by the permeabilities and collecting terms gives:

_V FRT
Feoiw + Aot Ha T fotoc1=8 ™ [ fcoo i+ Mrafo et forc o) (3.36)

From this equation, it is possible to solve for the potential difference V;, across the membrane, as
follows:

¥ =—RT1

0 Fycig + Pmcim T Fntan
W
F o Pye,pt Pplom ttin

(3.37)

where Vy, evaluates the intracellular minus extracellular potential (i.e., transmembrane voltage).
This equation is called the Goldman-Hodgkin-Katz equation. Its derivation is based on the works
of David Goldman (1943) and Hodgkin and Katz (1949). One notes in Equation 3.37 that the
relative contribution of each ion species to the resting voltage is weighted by that ion's
permeability. For the squid axon, we noted (Section 3.5.2) that Py,/Px = 0.04, which explains why
its resting voltage is relatively close to V'k and quite different from VNa.

By substituting 37 °C for the temperature and the Briggs logarithm (with base 10) for the Napier logarithm
(to the base e), Equation 3.37 may be written as:

Freow + By .00 .+ B
V., =—61.logg KK TAH a5 Ha T 421501 [MV]
Co T Mafatta t g

(3.38)

Example
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It is easy to demonstrate that the Goldman-Hodgkin-Katz equation (Equation 3.37) reduces to the
Nernst equation (Equation 3.21). Suppose that the chloride concentration both inside and outside
the membrane were zero (i.e., coc1 = cicl = 0). Then the third terms in the numerator and
denominator of Equation 3.37 would be absent. Suppose further that the permeability to sodium
(normally very small) could be taken to be exactly zero (i.e., Pna = 0). Under these conditions the
Goldman-Hodgkin-Katz equation reduces to the form of the Nernst equation (note that the
absolute value of the valence of the ions in question |z| = 1). This demonstrates again that the
Nernst equation expresses the equilibrium potential difference across an ion permeable membrane
for systems containing only a single permeable ion.

3.4.3 The Reversal Voltage

The membrane potential at which the (net) membrane current is zero is called the reversal voltage (Vy).
This designation derives from the fact that when the membrane voltage is increased or decreased, it is at
this potential that the membrane current reverses its sign. When the membrane is permeable for two types
of ions, A" and B”, and the permeability ratio for these ions is Pa/Pg, the reversal voltage is defined by the
equation:

_RT, [Pl Pa) 4,45,

”
BT ZF [ PyiBg )4 +5

This equation resembles the Nernst equation (Equation 3.21), but it includes two types of ions. It
is the simplest form of the Goldman-Hodgkin-Katz equation (Equation 3.37).

3.51I0N FLOW THROUGH THE MEMBRANE

3.5.1 Factors Affecting Ion Transport Through the Membrane

This section explores the flow of various ions through the membrane under normal resting conditions.

The flow of ions through the cell membrane depends mainly on three factors:

1. the ratio of ion concentrations on both sides of the membrane
2. the voltage across the membrane,and
3. the membrane permeability.

The effects of concentration differences and membrane voltages on the flow of ions may be made
commensurable if, instead of the concentration ratio, the corresponding Nernst voltage is considered. The
force affecting the ions is then proportional to the difference between the membrane voltage and the Nernst
voltage.

Regarding membrane permeability, we note that if the biological membrane consisted solely of a lipid
bilayer, as described earlier, all ionic flow would be greatly impeded. However, specialized proteins are
also present which cross the membrane and contain aqueous channels. Such channels are specific for
certain ions; they also include gates which are sensitive to membrane voltage. The net result is that
membrane permeability is different for different ions, and it may be affected by changes in the
transmembrane voltage, and/or by certain ligands.

As mentioned in Section 3.4.1, Hodgkin and Huxley (1952a) formulated a quantitative relation called the
independence principle. According to this principle the flow of ions through the membrane does not
depend on the presence of other ions. Thus, the flow of each type of ion through the membrane can be
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considered independent of other types of ions. The total membrane current is then, by superposition, the
sum of the currents due to each type of ions.

3.5.2 Membrane Ion Flow in a Cat Motoneuron

We discuss the behavior of membrane ion flow with an example. For the cat motoneuron the following ion
concentrations have been measured (see Table 3.1).

Table 3.1. Ion concentrations measured from cat motoneuron

Outside Inside
the membrane the membrane
[mol/m’] [mol/m’]
Na® 150 15
K’ 5.5 150
Cr 125 9

For each ion, the following equilibrium voltages may be calculated from the Nernst equation:

Ve = -61 1ogio(15/150) = +61 mV
Vi =-61 logio(150/5.5) = -88 mV

VCI =+61 10g10(9/125) =-70 mV

The resting voltage of the cell was measured to be -70 mV.

When Hodgkin and Huxley described the electric properties of an axon in the beginning of the 1950s (see
Chapter 4), they believed that two to three different types of ionic channels (Na", K', and Cl) were
adequate for characterizing the excitable membrane behavior. The number of different channel types is,
however, much larger. In 1984, Bertil Hille (Hille, 1984/1992) summarized what was known at that time
about ion channels. He considered that about four to five different channel types were present in a cell and
that the genome may code for a total number of 50 different channel types. Now it is believed that each cell
has at least 50 different channel types and that the number of different channel proteins reaches one
thousand.

We now examine the behavior of the different constituent ions in more detail.

Chloride Ions

In this example the equilibrium potential of the chloride ion is the same as the resting potential of the cell.
While this is not generally the case, it is true that the chloride Nernst potential does approach the resting
potential. This condition arises because chloride ion permeability is relatively high, and even a small
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movement into or out of the cell will make large changes in the concentration ratios as a result of the very
low intracellular concentration. Consequently the concentration ratio, hence the Nernst potential, tends to
move toward equilibrium with the resting potential.

Potassium ions

In the example described by Table 3.1, the equilibrium voltage of potassium is 19 mV more negative than
the resting voltage of the cell. In a subsequent section we shall explain that this is a typical result and that
the resting potential always exceeds (algebraically) the potassium Nernst potential. Consequently, we must
always expect a net flow of potassium ions from the inside to the outside of a cell under resting conditions.
To compensate for this flux, and thereby maintain normal ionic composition, the potassium ion must also
be transported into the cell. Such a movement, however, is in the direction of increasing potential and
consequently requires the expenditure of energy. This is provided by the Na-K pump,that functions to
transport potassium at the expense of energy.

Sodium Ions

The equilibrium potential of sodium is +61 mV, which is given by the concentration ratio (see Table 3.1).
Consequently, the sodium ion is 131 mV from equilibrium, and a sodium influx (due to both diffusion and
electric field forces) will take place at rest. Clearly neither sodium nor potassium is in equilibrium, but the
resting condition requires only a steady-state. In particular, the tofal membrane current has to be zero. For
sodium and potassium, this also means that the total efflux and total influx must be equal in magnitude.
Since the driving force for sodium is 6.5 times greater than for potassium, the potassium permeability must
be 6.5 times greater than for sodium. Because of its low resting permeability, the contribution of the
sodium ion to the resting transmembrane potential is sometimes ignored, as an approximation.

In the above example, the ionic concentrations and permeabilities were selected for a cat motoneuron. In
the squid axon, the ratio of the resting permeabilities of potassium, sodium and chloride ions has been
found to be Px:Pna:Pci= 1:0.04:0.45.

3.5.3 Na-K Pump

The long-term ionic composition of the intracellular and extracellular space is maintained by the Na-K
pump. As noted above, in the steady state, the total passive flow of electric current is zero, and the
potassium efflux and sodium influx are equal and opposite (when these are the only contributing ions).
When the Na-K pump was believed to exchange 1 mol potassium for 1 mol sodium, no net electric current
was expected. However recent evidence is that for 2 mol potassium pumped in, 3 mol sodium is pumped
out. Such a pump is said to be electrogenic and must be taken into account in any quantitative model of the
membrane currents (Junge, 1981).

3.5.4 Graphical Illustration of the Membrane Ion Flow

The flow of potassium and sodium ions through the cell membrane (shaded) and the electrochemical
gradient causing this flow are illustrated in Figure 3.5. For each ion the clear stripe represents the ion flux;
the width of the stripe, the amount of the flux; and the inclination (i.e., the slope), the strength of the
electrochemical gradient.

As in Figure 3.2, the vertical axis indicates the potential, and the horizontal axis distance normal to the
membrane. Again, when AV is positive (downward), the transmembrane current (for a positive ion) is also
positive (i.e., outward). For a negative ion (CI"), it would be inward.
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Fig. 3.5. A model illustrating the transmembrane ion flux. (After Eccles, 1968.) (Note that for K
and CI passive flux due to diffusion and electric field are shown separately)

3.6 CABLE EQUATION OF THE AXON

Ludvig Hermann (1905b) was the first to suggest that under subthreshold conditions the cell membrane can
be described by a uniformly distributed leakage resistance and parallel capacitance. Consequently, the
response to an arbitrary current stimulus can be evaluated from an elaboration of circuit theory. In this
section, we describe this approach in a cell that is circularly cylindrical in shape and in which the length
greatly exceeds the radius. (Such a model applies to an unmyelinated nerve axon.)
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3.6.1 Cable Model of the Axon

Suppose that an axon is immersed in an electrolyte of finite extent (representing its extracellular medium)
and an excitatory electric impulse is introduced via two electrodes - one located just outside the axon in the
extracellular medium and the other inside the axon, as illustrated in Figure 3.6. The total stimulus current
(1;), which flows axially inside the axon, diminishes with distance since part of it continually crosses the
membrane to return as a current (/,) outside the axon. Note that the definition of the direction of positive
current is to the right for both /; and /,, in which case conservation of current requires that /, = -/;. Suppose
also that both inside and outside of the axon, the potential is uniform within any crossection (i.e.,
independent of the radial direction) and the system exhibits axial symmetry. These approximations are
based on the cross-sectional dimensions being very small compared to the length of the active region of the
axon. Suppose also that the length of the axon is so great that it can be assumed to be infinite.

Under these assumptions the equivalent circuit of Figure 3.7 is a valid description for the axon. One should
particularly note that the limited extracellular space in Figure 3.6 confines current to the axial direction and
thus serves to justify assigning an axial resistance Ro to represent the interstitial fluid. In the model, each
section, representing an axial element of the axon along with its bounding extracellular fluid,is chosen to be
short in relation to the total axon length. Note, in particular, that the subthreshold membrane is modeled as
a distributed resistance and capacitance in parallel. The resistive component takes into account the ionic
membrane current iml; the capacitance reflects the fact that the membrane is a poor conductor but a good
dielectric, and consequently, a membrane capacitive current imC must be included as a component of the
total membrane current. The axial intracellular and extracellular paths are entirely resistive, reflecting
experimental evidence regarding nerve axons..

— — Experimental chamber
Physiological salt solution
— Membrane
ol
Axoplasm
—

B Lo S Sooe Lo 5ot Do d S Sl S b

Fig. 3.6. The experimental arrangement for deriving the cable equation of the axon.
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Fig. 3.7. The equivalent circuit model of an axon. An explanation of the component elements is
given in the text.

The components of the equivalent circuit described in Figure 3.7 include the following: Note that instead of
the MKS units, the dimensions are given in units traditionally used in this connection. Note also that
quantities that denote "per unit length" are written with lower-case symbols.

ri = intracellular axial resistance of the axoplasm per unit length of axon [kQ/cm axon length]

extracellular axial resistance of the (bounding) extracellular medium per unit length of axon
ro =
[kQ/cm axon length]</

membrane resistance times unit length of axon [kQ-cm axon length] (note that this is in the
m = . . . . . . .
radial direction, which accounts for its dimensions)

¢m = membrane capacitance per unit length of axon [F/cm axon length]

We further define the currents and voltages of the circuit as follows (see Figures 3.6 and 3.7):

I; = total longitudinal intracellular current [HA]
I, = total longitudinal extracellular current [HA]

total transmembrane current per unit length of axon [pA/cm axon length] (in radial
1] =
™ direction)

capacitive component of the transmembrane current per unit length of axon [pA/cm axon

1] =

me length]

i = ionic component of the transmembrane current per unit length of axon [uA/cm axon length]
@, = potential inside the membrane [mV]

@, = potential outside the membrane [mV]

Vi = O; - ®, membrane voltage [mV]

V., = membrane voltage in the resting state [mV]

S
"

V., - V, = deviation of the membrane voltage from the resting state [mV]
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A graphical sketch defining of various potentials and voltages in the axon is given in Figure 3.8.

We note once again that the direction of positive current is defined as the direction of the positive x-axis
both inside and outside the axon. Therefore, for all values of x, conservation of current requires that /; + /,
= 0 provided that x does not lie between stimulating electrodes. For a region lying between the stimulating
electrodes, /; + I, must equal the net applied current..

d &
¢ =0 - -
& Vi
i >
V=&
+ /!
e .
| v

Fig. 3.8. A graphical sketch depicting various potentials and voltages in the axon used in this book.

In the special case when there are no stimulating currents (i.e., when [; = I, = I, = 0), then V,, = V;
and 7" = 0. However, once activation has been initiated we shall see that it is possible for /; + I, =
0 everywhere and V' #0 in certain regions.

Since V; , the membrane resting voltage, is the same everywhere, it is clear that

i _ v, nd g _ v, (3.40)

x 2 s bl

based on the definition of ¥’ given above.

3.6.2 The Steady-State Response

We first consider the stationary case (i.e., 8/6t = 0) which is the steady-state condition achieved following
the application of current step. This corresponds to the limit # — cG. The steady-state response is illustrated
in Figure 3.9. It follows from Ohm's law that

3D, 2T,

Ax Th Ax Lo 541
From the current conservation laws, it follows also that the transmembrane current per unit length,
im, must be related to the loss of /; or to the gain of /, as follows:
ar. I
fpy = ———= —=2 (3.42)
dr dx
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Note that this expression is consistent with /; + I, = 0. The selection of the signs in Equation 3.42
is based on outward-flowing current being defined as positive. From these definitions and

Equations 3.40 and 3.41 (and recalling that V' = @1 - ®o - V;), it follows that

e ar, Al
=—Fr—tF
ax? dx “8x

A
A

i [mm] |
B 1-0_.5 AV (= V)
JiN
."IIII III"'.
f'f N \\'\..
.-"f- 7] k."x.
,,»’IDE 7] xx‘\\ | | i
S CY ) S — 2 ! !
TR :
| NG :
] : he—
I I .
[ | I I . I | I I [ . | | 1
210 o1 203 4 5 68 7 8 910

Fig. 3.9. (A) Stimulation of a nerve with current step.

(B) Variation of the membrane voltage as a function of distance.

Substituting Equation 3.42 into Equation 3.44 gives:
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which is called the general cable equation.

Under stationary and subthreshold conditions the capacitive current ¢, dV"/dt = 0; so that the membrane
current per unit length is simply i, = V"/ry; according to Ohm's law. Consequently, Equation 3.45 can be
written in the form

22; it (3.46)
r??'!
whose solution is
E}r' — ﬂg_x'rl +B§' 1 (347)

The constant A in Equation 3.47 has the dimension of length and is called the characteristic length
or length constant of the axon. It is called also the space constant. The characteristic length A is
related to the parameters of the axon by Equation 3.46, and is given by:

iz | (fm (3.48)
rtr, i

The latter form of Equation 3.48 may be written because the extracellular axial resistance 7, is
frequently negligible when compared to the intracellular axial resistance 7;.

With the boundary conditions:

Vo=V (0)and ¥, _p=0

=

the constants A and B take on the values A = V'(0) and B = 0, and from Equation 3.47 we obtain
the solution:

= (0)e (3.49)

This expression indicates that V' decreases exponentially along the axon beginning at the point of
stimulation (x = 0), as shown in Figure 3.9B. At x = A the amplitude has diminished to 36.8% of
the value at the origin. Thus A is a measure of the distance from the site of stimulation over which
a significant response is obtained. For example at x = 2\ the response has diminished to 13.5%,
whereas at x = 5\ it is only 0.7% of the value at the origin.

3.6.3 Stimulation with a Step-Current Impulse

In this section we consider the transient (rather than steady-state) response of the axon to a subthreshold
current-step input. In this case the membrane current is composed of both resistive and capacitive
components reflecting the parallel RC nature of the membrane:
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by = bt e
where i, =the total membrane current per unit length [uA/cm axon length]
imr = the resistive component of the membrane current per unit length [uA/cm axon length]
imc = the capacitive component of the membrane current per unit length [uA/cm axon length]

Under transient conditions Equation 3.50 substituted into Equation 3.45 may be written:

1 #F L
n+rn Axt o, &

m

The left side of Equation 3.51 evaluates the total membrane current i,,, whereas on the right side
the first term represents the resistive component (formed by the ionic currents), and the second
term the capacitive current which must now be included since &#/2¢# 0 . Equation 3.51 may also
be written in the form:

which can be easily expressed as

2 1 1
T oo

_12
Ax® B

where T = rycn is the time constant of the membrane and A is the space constant as defined in
Equation 3.48.

Here the time constant was derived for a long, thin axon corresponding to a one-dimensional problem. The
time constant may be derived with a similar method also for the surface of a membrane as a two-
dimensional problem. In such case instead of the variables defined "times unit length" and "per unit
length", variables defined "times unit area" and "per unit area" are used. Then we obtain for the time
constant T = R,,Cy,.

The temporal and spatial responses of the membrane voltage for several characteristic values of x and ¢ are
illustrated in Figure 3.10. One should note that the behavior of V' as a function of x is nearly exponential
for all values of ¢, but the response as a function of ¢ for large values of x differs greatly from an
exponential behavior (becoming S-shaped). These curves illustrate the interpretation of A, the space
constant, as a measure of the spatial extent of the response to the stimulating current. For values of x/A less
than around 2, 7 is essentially a measure of the time to reach steady state. However, for large x/A this
interpretation becomes poor because the temporal curve deviates greatly from exponential. In Figure 3.10,
where A = 2.5 mm, the electrode at x = 5 mm is at 2, and the amplitude, after an interval t, has reached
only 37% of steady state. Were we to examine x = 25 mm (corresponding to 5A), only 0.8% of steady-state
would be reached after the interval t.
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Fig. 3.10. The response of the axon to a step-current impulse.

(A) The physical setup, including the waveform of the applied current and the placement of stimulating and

recording electrodes.

(B) The spatial response at T = 13, 35, 100 ms;
corresponds to Equation 3.49.

and ¢ = 0. The latter curve is the steady-state response and

(C) The temporal response of three axial sites at x =0, 2.5, 5 mm.

While a closed-form solution to Equation 3.53 can be described, we have chosen to omit it from this text
because of its complexity. One can find a derivation in Davis and Lorente de No (1947). Rather than
include this analytical material, we have chosen instead to illustrate the temporal and spatial response of
the transmembrane voltage to a current step for a range of values of A and 1. This is provided in Figure

3.11.
103

forras: BioLabor Biofizikai és Laboratoriumi Szolg. Kft. www.biolabor.hu



Specifically, Figure 3.11 describes the subthreshold transmembrane voltage response to a current step of
very long duration introduced extracellularly at the center of a cable of infinite length. The response, when
the current is turned on, is shown in the left-hand side of the figure, whereas the response, when the current
is subsequently turned off, is on the right. The transmembrane voltage is described as a function of time for
given positions of the fiber. The transmembrane voltage is also described as a function of position at given
times following the application of the current or its termination. The figure is drawn from a recalculation of
its quantities from the original publication of Hodgkin and Rushton (1946).

Note that distance is shown normalized to the space constant , whereas time is normalized to the time
constant . Normalization, such as this, results in "universal" curves that can be adapted to any actual value
of and . Note also that the points on a particular voltage versus distance curve drawn at some values of t in
the upper graph can also be found at the same values of t in the lower graph for the particular distance
values, and vice versa. The fact that the upper and lower curves show the same phenomenon but in
different dimensions is emphasized by the dotted vertical lines which indicate the corresponding location of
points in the two sets of curves.

Table 3.2 lists measured values of characteristic lengths and time constants for several axons for several
different species. A significant variation from species to species is seen.

Table 3.2. Cable constants for unmyelinated axons of different species

Species
Quantity Dimension Squid Lobster  Crayfish
diameter [wm] 500 75 30
characteristic length A [cm] 0.5 0.25 0.25
time constant t [ms] 0.5 0.25 0.25
specific resistance of the membrane *) [kQ-cm?] 0.7 2.0 5.0
specific capacitance of the membrane *) [uWF/cm?] 1 1 1

*) The specific resistance and specific capacitance of the membrane can be calculated from values of

resistance and capacitance per unit length by use of the following:

R, =2nary, (:
Cn = cn/(2ma) (

. . . . . 2
where R, = specific resistance of the membrane (membrane resistance times unit area) [kQ-cm
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rm = membrane resistance times unit length [kQ-cm axon length]

C,, = specific capacitance of the membrane (membrane capacitance per unit area) [uF/cm_]

¢m = membrane capacitance per unit length [uF/cm axon length]

a = fiber radius [cm].
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Fig. 3.11. Subthreshold transmembrane voltage response to a step current of very long
duration at different instants of time (upper graphs) and at different distances from the sites
of stimulation (lower graphs). The responses when the current is turned on and off are
shown in the left and right sides of the figure, respectively.
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3.7 STRENGTH-DURATION RELATION

When an excitable membrane is depolarized by a stimulating current whose magnitude is gradually
increased, a current level will be reached, termed the threshold, when the membrane undergoes an action
impulse. The latter is characterized by a rapid and phasic change in membrane permeabilities, and
associated transmembrane voltage. An illustration of this process was given in Figure 2.8, where the
response to stimulus level 2 is subthreshold, whereas stimulus 3 appears just at threshold (since sometimes
an action potential (3B) results whereas at other times a passive response (3A) is observed). An action
potential is also clearly elicited for the fransthreshold stimulus of 4.

Under active conditions the membrane can no longer be characterized as linear, and the RC model
described in the previous section is not applicable. In the next chapter, we present a detailed study of the
active membrane.

A link between this chapter, which is limited to the passive membrane, and the next, which includes the
nonlinear membrane, lies in the modeling of conditions that lead to excitation. Although it is only an
approximation, one can consider the membrane just up to the point of activation as linear (i.e., passive).
Consequently, membrane behavior within this limit can be analyzed using ordinary electric circuits. In
particular, if threshold values are known, it then becomes possible to elucidate conditions under which
activation will just be achieved. Since activation is affected not only by the strength of a stimulating current
but also its duration, the result is the evaluation of strength-duration curves that describe the minimum
combinations of strength and duration just needed to produce the activation (Arvanitaki, 1938), as was
illustrated in Figure 2.10.

A simple example of these ideas is furnished by a cell that is somewhat spherical in shape and in which one
stimulating electrode is placed intracellularly and the other extracellularly. One can show that for cells of
such shape, both the intracellular and extracellular space is isopotential at all times. Thus, if a current is
passed between the electrodes, it passes uniformly across the membrane so that all membrane elements
behave similarly. As a consequence, the corresponding electric circuit is a lumped R, and C,, in parallel.
The value of R,, is the membrane resistance times unit area, whereas C,, is the membrane capacitance per
unit area.

If [; is the stimulus current per unit area, then from elementary circuit theory applied to this parallel RC
circuit, we have

where V' =change in the membrane voltage [mV]
I, = stimulus current per unit area [uA/cm,]
R.» = membrane resistance times unit area [kQ-cm_]
t =stimulus time [ms]
T =membrane time constant = R,,C,, [ms]

C.» = membrane capacitance per unit surface [uF/cm_]
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Unfortunately, this simple analysis cannot be applied to cells with other shapes (e.g., the fiberlike shape of
excitable cells), where the response to a stimulating current follows that governed by Equation 3.53 and
described in Figure 3.11. However, Equation 3.56 could still be viewed as a first-order approximation
based on a lumped-parameter representation of what is actually a distributed-parameter structure.
Following this argument, in Figure 3.12 we have assumed that a long fiber can be approximated by just a
single (lumped) section, hence leading to an equation of the type described in Equation 3.56. A
characteristic response based on Equation 3.56 is also shown in Figure 3.12..
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Fig. 3.12. The derivation of the strength-duration curve.

(A) An approximate lumped-parameter RC-network which replaces the actual distributed parameter
structure.

(B) The response of the network to a current pulse of magnitude /; is exponential and is shown for a pulse
of very long duration.

The membrane is assumed to be activated if its voltage reaches the threshold value. We consider this
condition if we substitute ' = 6Vy, into Equation 3.56, where Vth is the change in the resting voltage
needed just to reach the threshold voltage. Equation 3.56 may now be written in the form:

AV

I = L 3.57
R [1-27177) (357

The smallest current that is required for the transmembrane voltage to reach threshold is called the
rheobasic current. With this stimulus current, the required stimulus duration is infinite. Because the
rheobasic current is given by I, = 6Vy/Ry, the strength-duration curve takes on the form:

I rh

—tir

I

5

= (3.58)
1-¢

The strength-duration curve is illustrated in Figure 3.13. Here the stimulus current is normalized so that the
rheobasic current has the strength of unity. (Note again, that this result is derived for a space-clamp
situation.)
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The time needed to reach the threshold voltage with twice the rheobasic stimulus current is called
chronaxy. For the relation between chronaxy and the membrane time constant, Equation 3.57 can be
written as:

_gtie (3.59)

AV, (3.60)

AV, (3.61)

If the stimulus current is twice rheobasic current, then I, = 2(3V/R.,), and we obtain for chronaxy:
f=rln 2=0625r (3.62)

A

Ts []
10+

g4
5
7
G
g
4

i
i

<l Chronaxy Rheobase
| (=0.69 1)

Strengthrduration curve

Threshold

0.0 0.5 10 15 20 25
Time [1]

Fig. 3.13. (A) Strength-duration curve. The units are relative.

(B) The subthreshold transient response prior to excitation.

108 forrds: BioLabor Biofizikai és Laboratériumi Szolg. Kft. www.biolabor.hu



The analytical results above are approximate for several reasons. First, the excitable tissue cannot
normally be well approximated by a lumped R since such elements are actually distributed. (In a space-
clamp stimulation the membrane can be more accurately represented with a lumped model.) Also the use
of a linear model is satisfactory up to perhaps 80% of the threshold, but beyond this the membrane
behaves nonlinearly. Another approximation is the idea of a fixed threshold; in a subsequent chapter, we
describe accommodation, which implies a threshold rising with time.

In a particular situation, a strength-duration curve can be found experimentally. In this case, rheobase and
chronaxy are more realistic measures of the stimulus-response behavior. This type of data for chronaxy is
given in Table 3.3, which lists chronaxies measured for various nerve and muscle tissues. Note that, in
general, the faster the expected response from the physiological system, the shorter the chronaxy value.

Table 3.3. Chronaxy values for excitable tissues

Tissue Time [ms]
Skeletal muscle
Frog (gastrocnemius) 0.2-0.3
Frog (sartorius 0.3
Turtle (leg flexors and extensors) 1-2
Man (arm flexors) 0.08-0.1
Man (arm extensors) 0.16-0.3
Man (thigh muscles) 0.10-0.7
Man (facial muscles) 0.24-0.7

Cardiac muscle

Frog (ventricle) 3

Turtle (ventricle) 2

Dog (ventricle) 2

Man (ventricle) 2
Smooth muscle

Frog (stomach) 100
Nerve

Frog (sciatic) 0.3
Man (A fibers) 0.2
Man (vestibular) 14-22
Receptors

Man (tongue) 1.4-1.8

Man (retinal rods) 1.2-1.8

Man (retinal cones) 2.1-3.0
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Active Behavior of the Cell Membrane

4.1 INTRODUCTION

When a stimulus current pulse is arranged to depolarize the resting membrane of a cell to or beyond the
threshold voltage, then the membrane will respond with an action impulse. An example of this is seen in
Figure 2.8 in the action potential responses 3b and 4 to the transthreshold stimuli 3 and 4, respectively.
The response is characterized by an initially rapidly rising transmembrane potential, which reaches a
positive peak and then more slowly recovers to the resting voltage. This phasic behavior typifies what is
meant by an action impulse.

A quantitative analysis of the action impulse was successfully undertaken by Alan L. Hodgkin and
Andrew F. Huxley and colleagues in Cambridge (Hodgkin and Huxley, 1952abcd). Their work was made
possible because of two important factors. The first was the selection of the giant axon of the squid, a
nerve fiber whose diameter is around 0.5 mm, and consequently large enough to permit the insertion of
the necessary two electrodes into the intracellular space. (Credit for discovering the applicability of the
squid axon to electrophysiological studies is given to by J. Z. Young (1936).) The second was the
development of a feedback control device called the voltage clamp, capable of holding the
transmembrane voltage at any prescribed value.

This chapter describes the voltage clamp device, the experiments of Hodgkin and Huxley, the
mathematical model into which their data were fitted, and the resulting simulation of a wide variety of
recognized electrophysiological phenomena (activation, propagation, etc.). The voltage clamp procedure
was developed in 1949 separately by K. S. Cole (1949) and G. Marmont (1949). Because of its
importance, we first discuss the principle of the voltage clamp method in detail. The Hodgkin and Huxley
work is important not only for its ability to describe quantitatively both the active and the passive
membrane, but for its contribution to a deeper understanding of the membrane mechanisms that underlie
its electrophysiological behavior.

A remarkable improvement in the research of membrane electrophysiology was made by Erwin
Neher and Bert Sakmann, who in 1976 published a method for the measurement of ionic currents in a
single ionic channel (Neher and Sakmann, 1976). This method, called patch clamp, is a further
development of the voltage clamp technique. The patch clamp technique allows the researcher to
investigate the operation of single ion channels and receptors and has a wide application, for instance, in
the pharmaceutical research. By measuring the capacitance of the plasma membrane with the patch clamp
technique, the researcher may also investigate the regulation of exocytosis of the cell.

The electric behavior of the axon membrane is, of course, described by the net ion flow through a
great number of ion channels. The ion channels seem to behave "digitally" (as seen in the measurement
result of the patch clamp experiment); however, because of the large number of ion channels, the electric
currents of a large area of the axon membrane exhibit "analog" behavior, as seen in the measurement
result obtained in a voltage clamp experiment.

Logically, discussion of the electric behavior of the membrane should begin by examining the
behavior of single ion channels and then proceed to by explain the electric behavior of the membrane as
the summation of the behavior of a large number of its constituent ionic channels. For historical reasons,
however, membrane behavior and the voltage clamp method are discussed here first, before ionic channel
behavior and the patch clamp method are explored.
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4.2 VOLTAGE CLAMP METHOD

4.2.1 Goal of the voltage clamp measurement

In order to describe the activation mechanism gquantitatively, one must be able to measure selectively the flow of
each constituent ion of the total membrane current. In this section, we describe how this is accomplished by the
voltage clamp measurement procedure.

The following current components arise when the axon is stimulated at one end and the membrane voltage
as well as current of a propagating nerve impulse are measured distally:

1. The axial (longitudinal) currents due to propagation of the nerve impulse:
a. I, = total axial current outside the axon
b. [;=total axial current inside the axon
Note that [, = -I..
2. The transmembrane current i,, per unit length arising from intrinsic membrane properties and enumerated
by the following:
Capacitive current component i,,c per unit length
a. lonic current component i, per unit length including:
1. Sodium current iy, per unit length
2. Potassium current ix per unit length
3. Chloride (or leakage) current i per unit length

Our particular goal is to measure selectively each individual ionic current, especially the sodium
and potassium currents. Note that because we examine the ionic currents during the propagating nerve
impulse, the membrane resistance () is not constant; hence it is represented by a symbol indicating a
variable resistance. Any measurement of membrane current with a propagating nerve impulse, however,
will yield the sum of these currents.

The total membrane current (as illustrated in Figure 4.1) satisfies Equation 3.48, which can be
rewritten in the form:

2
W, 1 3w, w1

&  rtr, A

zm=zm1+cm

where i, =total transmembrane current per unit length [LA/cm axon length]
im =ionic component of the transmembrane current per unit length [uA/cm axon length]
¢n = membrane capacitance per unit length [uF/cm axon length]
V., = membrane voltage [mV]
t =time[ms]
ri = intracellular axial resistance per unit length of axon [k /cm axon length]
r, =interstitial resistance per unit length [k /cm axon length]

x =distance [cm]
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By measuring V() and the propagation velocity ®, we could obtain V(¢ - x/®) and hence i, from
Equation 4.1. Although the determination of iy, is straightforward, the accuracy depends on the uniformity
of the preparation as well as knowledge of the parameters r;, r,, and ®. A more satisfactory procedure is
based on the elimination of the axial currents.

By convention V7, the transmembrane voltage, is taken as the intracellular potential, @, relative to
the extracellular potential, ®,. That is, V, = ®; - ®,. Further, the positive direction of transmembrane
current is chosen as outward (from the intracellular to the extracellular space). These conventions were
adopted in the mid-1950s so that in reading earlier papers one should be alert to encountering an opposite
choice. The aforementioned conventions are reflected in Equation 4.1. Also, to maintain consistency with
the tradition of drawing electronic circuits, in the equivalent circuits of the cell membrane, the reference
terminal, that is the outside of the cell, is selected to be at the bottom and the terminal representing the
measured signal, that is the inside of the cell, is at the top. In those figures, where it is appropriate to
illustrate the membrane in the vertical direction, the inside of the membrane is located on the left-hand
side and the outside on the right-hand side of the membrane.

A B
f-
[ :F
¢3m
mll
= = ¢, 1 [+
.
Activation proceeds along the axan | —r

Fig. 4.1. The principle of membrane current measurement with a propagating nerve impulse.

(A) It is assumed that a propagating wave is initiated at the left and has a uniform velocity
at the site where the voltage is measured. To obtain the transmembrane current, Equation 4.1 can
be used; implementation will require the measurement of the velocity of propagation so that &
F/8x_ = (1/0)2 Vi/2t_can be evaluated.

(B) A portion of the linear core conductor model (assuming the extracellular medium to be
bounded) which reflects the physical model above. (Note that because we examine the ionic
currents during the propagating nerve impulse, the membrane resistance 7y, is not constant; hence
it is represented by a symbol indicating a variable resistance. To the extent that the ion
concentrations may change with time then E,, can also be time-varying.) The symbols are
explained in the text.

4.2.2 Space clamp

With appropriate instrumentation, it is possible to stimulate the axon simultaneously throughout the entire length of
the preparation. Then the membrane voltage at each instant of time is identical over the entire length of the axon.
This situation can be brought about by inserting a thin stimulation electrode along the axis of the entire length of
the dissected axon, whereas the other electrode, a concentric metal cylinder of the same length, is outside the axon.
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As a result, there is complete longitudinal uniformity of potential along the axon. This means that the potential can
vary only with respect to the radius from the axis, and only radial currents can arise. Furthermore, all membrane
elements behave synchronously, so the entire axon membrane behaves as whole. (Hodgkin and Huxley further
designed a compartment to eliminate any fringing effects at the ends.) Consequently, between the concentric
electrodes, a membrane current will be measured that obeys the equation:

v,

m

ot

I =igl Tom (4.2)

where i, =the total current per unit length [uA/cm axon length]
i = the ionic current per unit length [uA/cm axon length]

Cm = the capacitance of the preparation per unit length [uF/cm axon length]

Because the apparatus ensures axial uniformity, it is described as space clamped. The electric model of
the space clamped measurement is illustrated in Figure 4.2.
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Fig. 4.2. Simplified principle and electric model of the space clamp measurement procedure.

(A) The physical structure of the device that ensures axial uniformity, hence current flow that is in
the radial direction only. The problem is thus reduced to one dimension.
(B) The total current (im), through the membrane (per unit length), consisting of the components of
ionic current iml and capacitive current imC.

4.2.3 Voltage clamp

In the space clamp procedure, the membrane current includes the capacitive component as a confounding source.
The capacitive component can be eliminated by keeping the membrane voltage constant during the measurement.
Such a procedure is called voltage clamp. Because the capacitive current, the first term on the right side of
Equation 4.2, is proportional to the time derivative of the voltage, the capacitive current is zero if the derivative of
the voltage is zero. In this case the equation representing the membrane current reduces to:
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im = imI (43)

and the membrane current is composed solely of ionic currents. (In the moment following the onset of the
voltage step, a very brief current pulse arises owing to the capacitance of the membrane. It disappears
quickly and does not affect the measurement of the ensuing activation currents.)

The voltage clamp procedure is illustrated in the space-clamp device shown in Figure 4.3. A

desired voltage step is switched between the inner and outer electrodes, and the current flowing between
these electrodes (i.e., the transmembrane current) is measured.
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Fig. 4.3. Voltage clamp experiment.

(A) The simplified principle of the experiment.
(B) Electric model of the axon membrane in voltage clamp experiment.

The actual voltage clamp measurement circuit is somewhat more complicated than the one
described above and is shown in Figure 4.4. Separate electrodes are used for current application (a, ) and
voltage sensing (b, ¢) to avoid voltage errors due to the electrode-electrolyte interface and the resistance
of the thin current electrode wires. Figure 4.4 illustrates the principle of the measurement circuit used by
Hodgkin, Huxley, and Katz (1952). The circuit includes a unity gain amplifier (having high input
impedance), which detects the membrane voltage V7, between a wire inside the axon (b) and outside the
axon (c). The output is sent to an adder, where the difference between the clamp voltage (V) and the
measured membrane voltage (V) is detected and amplified. This output, K(V. - V), drives the current
generator. The current generator feeds the current to the electrode system (a, e€) and hence across the
membrane. The current is detected through measurement of the voltage across a calibrated resistance, R..
The direction of the controlled current is arranged so that V}, is caused to approach V., whereupon the
feedback signal is reduced toward zero. If K is large, equilibrium will be established with V;, essentially
equal to V. and held at that value. The principle is that of negative feedback and proportional control.

The measurements were performed with the giant axon of a squid. The thickness of the diameter of
this axon - approximately 0.5 mm - makes it possible to insert the two internal electrodes described in
Figure 4.4 into the axon. (These were actually fabricated as interleaved helices on an insulating mandrel.).
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Fig. 4.4. Realistic voltage clamp measurement circuit. Current is applied through electrodes (a)
and (e), while the transmembrane voltage, V7, is measured with electrodes (b) and (¢). The current
source is controlled to maintain the membrane voltage at some preselected value V-.
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4.3 EXAMPLES OF RESULTS OBTAINED WITH THE VOLTAGE CLAMP METHOD

4.3.1 Voltage clamp to sodium Nernst voltage

Figure 4.5 illustrates a typical transmembrane current obtained with the voltage clamp method. The potential inside
the membrane is changed abruptly from the resting potential of -65 mV to +20 mV with an 85 mV step. As a result,
an ionic current starts to flow which is inward at first but which, after about 2 ms, turns outward, asymptotically
approaching the value 2 mA/cm,.

Let us examine the membrane current arising with different voltage steps. Figure 4.6 presents the results
from experiments comprising five measurements at the voltage steps of 91-143 mV. In the series of curves, it may
be noted that the membrane current is again composed of two components - an early and a late behavior as was the
case in Figure 4.5.

The early current is directed inward for the smaller voltage steps. As the voltage step increases, the
amplitude of the inward component decreases, and it disappears entirely with the voltage step of 117 mV. With
higher voltage steps, the early current is directed outward and increases proportionally to the voltage step. The late
component of the membrane current on the other hand is always outward and increases monotonically, approaching
an asymptotic limit. This limit grows as a function of the size of the voltage step.

Assuming a resting membrane voltage of -65 mV, a 117 mV voltage step results in a membrane voltage of
+52 mV. Based on the sodium concentration inside and outside the membrane, the Nernst equation evaluates an
equilibrium voltage of +50 mV. (Note the example in Section 3.1.3.) Hence one can conclude that the early
component of the membrane current is carried by sodium ions since it reduces to zero precisely at the sodium
equilibrium voltage and is inward when V7, is less than the sodium Nernst voltage and outward when V;, exceeds
the sodium Nernst voltage. The outward (late) component must therefore be due to potassium ion flow. Because
chloride tends to be near equilibrium, for the axon at rest while the chloride permeability does not increase during
an action potential the chloride current tends to be small relative to that of sodium and potassium and can be
ignored..
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Fig. 4.5. Voltage step and membrane current in voltage clamp experiment.
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Fig. 4.6. A series of voltage clamp steps..4.3.2 Altering the ion concentrations

4.3.2 Altering the Ion Concentrations

An approach to the selective measurement of the potassium ion flow alone is available by utilizing a voltage clamp
step corresponding to the sodium Nernst potential. This maneuver effectively eliminates sodium flow. By
systematically altering the sodium concentration outside the axon, and then choosing the voltage clamp step at the
respective sodium Nernst voltage, we can study the behavior of K alone. And if we return to the current
measurement under normal conditions (with both sodium and potassium), subtracting the potassium current leaves
the sodium current alone.

This procedure is illustrated in Figure 4.7. This figure shows results from a voltage clamp experiment that
was first done in normal seawater with a 56 mV step. Figure 4.7.A illustrates the Nernst potentials for different ions
and the clamp voltage. The curve in (B) represents the measured total membrane current consisting of sodium and
potassium components. Curve (C) is the membrane current measured after the extracellular sodium ions were
reduced so that the 56 mV step reached the (new) sodium Nernst voltage. This curve, consequently, represents only
potassium current. By subtracting curve (C) from curve (B), we obtain curve (D), which is the membrane current
due to sodium ions in the original (unmodified sodium) situation. Thus curves (C) and (D) are the desired
components of (B). Note that Hodgkin and Huxley assumed that the potassium current is unaffected by changes in
extracellular sodium so that (C) is the same in both normal and reduced-sodium seawater.

A very clever technique was also developed by Baker, Hodgkin, and Shaw (1962) which enabled a change
to be made in the internal ionic composition as well. Figure 4.8 illustrates how to do the preparation of the axon for
the type of experiment conducted by Hodgkin and Huxley. For this experiment, it is first necessary to squeeze out
the normal axoplasm,; this is accomplished using a roller (A). Then the axon is filled with perfusion fluid (B).
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The membrane voltage is measured during action impulse before (C) and after (D) the procedures. Measurements
following restoration of initial conditions are also performed to ensure that the electric behavior of the axon
membrane has not changed.
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Fig. 4.7. Selective measurement of sodium and potassium current: The extracellular sodium ions
are replaced with an inactive cation to reduce the sodium Nernst potential so that it corresponds to
the clamp voltage value.
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Fig. 4.8. Preparation of the squid axon for a voltage clamp experiment, where the internal ionic
concentrations of the axon are changed.

(A) The axoplasm is first squeezed out with a roller.
(B) The axon is filled with perfusion fluid.
© The axon impulse is measured before perfusion.

(D) The axon impulse after perfusion.

4.3.3 Blocking of ionic channels with pharmacological agents

The sodium and potassium currents may also be separated by applying certain pharmacological agents that
selectively block the sodium and potassium channels. Narahashi, Moore, and their colleagues showed that
tetrodotoxin (TTX) selectively blocks the flow of sodium across the membrane (Narahashi, Moore, and Scott,
1964; Moore et al., 1967). Armstrong and Hille (1972) showed that tetraethylammonium (TEA) blocks the flow of
potassium ions. (It may be interesting to know that tetrodotoxin is the poisonous chemical that exists in the viscera
of the Japanese fugu fish. The fugu fish is considered as an exotic dish. Before it can be used in a meal, it must be
carefully prepared by first removing the poisonous parts.)

Figure 4.9 shows a series of voltage clamp experiments, which begin with normal conditions. Then the

sodium channels are blocked with tetrodotoxin, and the measurement represents only the potassium current.
Thereafter, the tetrodotoxin is flushed away, and a control measurement is made. After this, the potassium channels
are blocked with tetracthylammonium which allows selective measurement of the sodium current (Hille, 1970).
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Fig. 4.9. Selective measurement of sodium and potassium currents by selective blocking of the sodium and
potassium channels with pharmacological agents.

(A) Control measurement without pharmacological agents.

(B) Measurement after application of tetrodotoxin (TTX).

(C) Control measurement without pharmacological agents.

(D) Measurement after application of tetracthylammonium (TEA).

4.4 HODGKIN-HUXLEY MEMBRANE MODEL

4.4.1 Introduction

In the following, membrane kinetics is discussed in detail, based on the model by A. L. Hodgkin and A. F. Huxley
(1952d). Hodgkin and Huxley's model is based on the results of their voltage clamp experiments on giant axons of
the squid. The model is not formulated from fundamental principles but, rather is a combination of theoretical
insight and curve fitting. Hodgkin and Huxley described their work by saying:

Our object here is to find equations which describe the conductances with reasonable accuracy and are sufficiently simple for
theoretical calculation of the action potential and refractory period. For sake of illustration we shall try to provide a physical
basis for the equations, but must emphasize that the interpretation given is unlikely to provide a correct picture of the
membrane. (Hodgkin and Huxley, 1952d, p. 506)

In spite of its simple form, the model explains with remarkable accuracy many nerve membrane
properties. It was the first model to describe the ionic basis of excitation correctly. For their work,
Hodgkin and Huxley received the Nobel Prize in 1963. Although we now know many specific
imperfections in the Hodgkin-Huxley model, it is nevertheless essential to discuss it in detail to
understand subsequent work on the behavior of voltage-sensitive ionic channels.

The reader should be aware that the original Hodgkin and Huxley papers were written at a time
when the definition of V;,, was chosen opposite to the convention adopted in the mid-1950s. In the work
described here, we have used the present convention: Vm equals the intracellular minus extracellular
potential.
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4.4.2 Total membrane current and its components

Hodgkin and Huxley considered the electric current flowing across the cell membrane during activation to be
described by what we now call the parallel conductance model (called also the chord conductance model) (Junge,
1992), which for the first time separated several ion-conducting branches. This model is illustrated in Figure 4.10.
It consists of four current components:

bl e

Current carried by sodium ions

Current carried by potassium ions

Current carried by other ions (designated leakage current, constituting mainly from chloride ions)
Capacitive (displacement) current

In this model, each of these four current components is assumed to utilize its own (i.e., independent) path
or channel. To follow the modern sign notation, the positive direction of membrane current and Nernst
voltage is chosen to be from inside to outside.

& Intracellular medium

Vo=d-d,  ||F

o e [ [L
[ ‘ T'
--m
o GNa GK |::|GL
+ VNa + UH + VL
" _ _ _
Ty Extracellular medium

Fig. 4.10. The equivalent circuit of the Hodgkin-Huxley model. The voltage sources show the polarity of
the positive value. The calculated Nernst voltages of sodium, potassium, and chloride designate the value
of corresponding voltage sources. With the normal extracellular medium, Vy, has a positive value
(Equation 4.7) while V¢ and V1 have negative values (Equations 4.8 and 4.9). During an action impulse,
G, and Gy vary as a function of transmembrane voltage and time.

The model is constructed by using the basic electric circuit components of voltage source,

resistance, and capacitance as shown in Figure 4.10. The ion permeability of the membrane for sodium,
potassium, and other ions (introduced in Equation 3.34) is taken into account through the specification of
a sodium, potassium, and leakage conductance per unit area (based on Ohm's law) as follows:

%:%%%
q:%%ﬂ
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(4.4)

(4.5)

(4.6)
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Gnar Gy Gu - membrane conductance per unit area for sodium, potassium, and other ions - referred to as

where the leakage conductance [S/cm,]

= the electric current carried by sodium, potassium and other ions (leakage current) per unit

Ia I, |
Nt area [mA/em ]

Vnar Vi, VL = Nernst voltage for sodium, potassium and other ions (leakage voltage) [mV]

Vi = membrane voltage [mV]

The above-mentioned Nernst voltages are defined by the Nernst equation, Equation 3.21, namely:

ET o
Vg == —ln—" (4.7)
zF ColNa
BT g
Vi =———1In CLE (4.8)
zF ook
ET 5
P =——=1In o (4.9)
zF CD,CI

nn

where the subscripts "i" and "o" denote the ion concentrations inside and outside the cell membrane,
respectively. Other symbols are the same as in Equation 3.21 and z = 1 for Na and K but z = -1 for CL

In Figure 4.10 the polarities of the voltage sources are shown as having the same polarity which
corresponds to the positive value. We may now insert the Nernst voltages of sodium, potassium, and
chloride, calculated from the equations 4.7 ... 4.9 to the corresponding voltage sources so that a calculated
positive Nernst voltage is directed in the direction of the voltage source polarity and a calculated negative
Nernst voltage is directed in the opposite direction. With the sodium, potassium, and chloride
concentration ratios existing in nerve and muscle cells the voltage sources of Figure 4.10 in practice
achieve the polarities of those shown in Figure 3.4.

Because the internal concentration of chloride is very low small movements of chloride ion have a large
effect on the chloride concentration ratio. As a result, a small chloride ion flux brings it into equilibrium
and chloride does not play an important role in the evaluation of membrane potential (Hodgkin and
Horowicz, 1959). Consequently Equation 4.9 was generalized to include not only chloride ion flux but
that due to any non-specific ion. The latter flux arises under experimental conditions since in preparing an
axon for study small branches are cut leaving small membrane holes through which small amounts of ion
diffusion can take place. The conductance G was assumed constant while /1 was chosen so that the sum
of all ion currents adds to zero at the resting membrane potential.

When Vy, = Vna, the sodium ion is in equilibrium and there is no sodium current. Consequently, the
deviation of V},, from Vx, (1.., Vi - Vna) 1s @ measure of the driving voltage causing sodium current. The
coefficient that relates the driving force (V, - Vna) to the sodium current density Iy, is the sodium
conductance, G, - that is, Iva = Gna(Vim - Vna), consistent with Ohm's law. A rearrangement leads to
Equation 4.4. Equations 4.5 and 4.6 can be justified in the same way.
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Now the four currents discussed above can be evaluated for a particular membrane voltage, Vy,. The
corresponding circuits are formed by:

1. Sodium Nernst voltage and the membrane conductance for sodium ions
. Potassium Nernst voltage and the membrane conductance for potassium ions
3. Leakage voltage (at which the leakage current due to chloride and other ions is zero) and membrane
leakage conductance
4. Membrane capacitance

(Regarding these circuit elements Hodgkin and Huxley had experimental justification for assuming
linearly ohmic conductances in series with each of the emfs. They observed that the current changed
linearly with voltage when a sudden change of membrane voltage was imposed. These conductances are,
however, not included in the equivalent circuit in Figure 4.10. (Huxley, 1993))

On the basis of their voltage clamp studies, Hodgkin and Huxley determined that the membrane
conductance for sodium and potassium are functions of transmembrane voltage and time. In contrast, the
leakage conductance is constant. Under subthreshold stimulation, the membrane resistance and
capacitance may also be considered constant.

One should recall that when the sodium and potassium conductances are evaluated during a
particular voltage clamp, their dependence on voltage is eliminated because the voltage during the
measurement is constant. The voltage nevertheless is a parameter, as may be seen when one compares the
behavior at different voltages. For a voltage clamp measurement the only variable in the measurement is
time. Note also that the capacitive current is zero, because dV/dt = 0.

For the Hodgkin-Huxley model, the expression for the total transmembrane current density is the
sum of the capacitive and ionic components. The latter consist of sodium, potassium, and leakage terms
and are given by rearranging Equations 4.4 through 4.6. Thus

2
lrm :Cm d;n'+':Vm_FNa:'GNa+':Vm _VK)GK +':Vm _VL)GL (4.10)
where [, = membrane current per unit area [mA/cm_]
Cn = membrane capacitance per unit area [F/cm ]
Vi = membrane voltage [mV]

Vnar Vi, VL = Nernst voltage for sodium, potassium and leakage ions [mV]

Gna, Gk, G, = sodium, potassium, and leakage conductance per unit area [S/cm_]

As noted before, in Figure 4.10 the polarities of the voltage sources are shown in a universal and
mathematically correct way to reflect the Hodgkin-Huxley equation (Equation 4.10). With the sodium,
potassium, and chloride concentration ratios existing in nerve and muscle cells the voltage sources of
Figure 4.10 in practice achieve the polarities of those shown in Figure 3.4.

Note that in Equation 4.10, the sum of the current components for the space clamp action impulse
is necessarily zero, since the axon is stimulated simultaneously along the whole length and since after the
stimulus the circuit is open. There can be no axial current since there is no potential gradient in the axial
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direction at any instant of time. On the other hand, there can be no radial current (i.e., I, = 0) because in
this direction there is an open circuit. In the voltage clamp experiment the membrane current in Equation
4.10 is not zero because the voltage clamp circuit permits a current flow (necessary to maintain the clamp
voltage).

4.4.3 Potassium conductance

Because the behavior of the potassium conductance during the voltage clamp experiment is simpler than that of the
sodium conductance, it will be discussed first.

Hodgkin and Huxley speculated on the ion conductance mechanism by saying that

[it] depends on the distribution of charged particles which do not act as carriers in the usual sense, but which allow the ions to
pass through the membrane when they occupy particular sites in the membrane. On this view the rate of movement of the
activating particles determines the rate at which the sodium and potassium conductances approach their maximum but has little
effect on the (maximum) magnitude of the conductance. (Hodgkin and Huxley, 1952d, p. 502)

Hodgkin and Huxley did not make any assumptions regarding the nature of these particles in
chemical or anatomical terms. Because the only role of the particles is to identify the fraction of channels
in the open state, this could be accomplished by introducing corresponding abstract random variables that
are measures of the probabilities that the configurations are open ones. In this section, however, we
describe the Hodgkin-Huxley model and thus follow their original idea of charged particles moving in the
membrane and controlling the conductance. (These are summarized later in Figure 4.13.)

The time course of the potassium conductance (Gk) associated with a voltage clamp is described in
Figure 4.11 and is seen to be continuous and monotonic. (The curves in Figure 4.11 are actually
calculated from the Hodgkin-Huxley equations. For each curve the individual values of the coefficients,
listed in Table 1 of Hodgkin and Huxley (1952d), are used; therefore, they follow closely the measured
data.) Hodgkin and Huxley noted that this variation could be fitted by a first-order equation toward the
end of the record, but required a third- or fourth-order equation in the beginning. This character is, in fact,
demonstrated by its sigmoidal shape, which can be achieved by supposing Gx to be proportional to the
fourth power of a variable, which in turn satisfies a first-order equation. Hodgkin and Huxley gave this
mathematical description a physical basis with the following assumptions.

As is known, the potassium ions cross the membrane only through channels that are specific for
potassium. Hodgkin and Huxley supposed that the opening and closing of these channels are controlled
by electrically charged particles called n-particles. These may stay in a permissive (i.e., open) position
(for instance inside the membrane) or in a nonpermissive (i.e., closed) position (for instance outside the
membrane), and they move between these states (or positions) with first-order kinetics. The probability of
an n-particle being in the open position is described by the parameter #, and in the closed position by (1 -
n), where 0 =n =1. Thus, when the membrane potential is changed, the changing distribution of the n-
particles is described by the probability of # relaxing exponentially toward a new value.
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Fig. 4.11. Behavior of potassium conductance as a function of time in a voltage clamp experiment.

The displacement of transmembrane voltage from the resting value [in mV] is shown (all are
depolarizations). These theoretical curves correspond closely to the measured values.

In mathematical form, the voltage- and time-dependent transitions of the n-particles between the
open and closed positions are described by the changes in the parameter » with the voltage-dependent
transfer rate coefficients oy, and B,. This follows a first-order reaction given by :

# % (1—m)

(4.11)

P

where a, =the transfer rate coefficient for n-particles from closed to open state [1/s]
B, =the transfer rate coefficient for n-particles from open to closed state [1/s]

n  =the fraction of n-particles in the open state

1 - n = the fraction of n-particles in the closed state

If the initial value of the probability n is known, subsequent values can be calculated by solving the
differential equation
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Thus, the rate of increase in the fraction of n-particles in the open state dn/dt depends on their fraction in
the closed state (1 - n), and their fraction in the open state n, and on the transfer rate coefficients o, and
Bn. Because the n-particles are electrically charged, the transfer rate coefficients are voltage-dependent
(but do not depend on time). Figure 4.12A shows the variations of the transfer rate coefficients with
membrane voltage. Expressions for determining their numerical values are given at the end of this
section.

Furthermore Hodgkin and Huxley supposed that the potassium channel will be open only if four n-
particles exist in the permissive position (inside the membrane) within a certain region. It is assumed that
the probability of any one of the four n-particles being in the permissive position does not depend on the
positions of the other three. Then the probability of the channel being open equals the joint probability of
these four n-particles being at such a site and, hence, proportional to n*. (These ideas appear to be well
supported by studies on the acetylcholine receptor, which consists of five particles surrounding an
aqueous channel, and where a small cooperative movement of all particles can literally close or open the
channel (Unwin and Zampighi, 1980).)

The potassium conductance per unit area is then the conductance of a single channel times the
number of open channels. Alternatively, if Gk max 1S the conductance per unit area when all channels are
open (i.e., its maximum value), then if only the fraction n4 are open, we require that

Gy = Cprma 1 (4.13)

where Gk max = maximum value of potassium conductance [mS/cm_ ], and n obeys Equation 4.12.
Equations 4.12 and 4.13 are among the basic expressions in the Hodgkin and Huxley formulation.

Equation for n at voltage clamp

For a voltage step (voltage clamp), the transfer rate coefficients a, and 3, change immediately to new (but constant)
values. Since at a constant voltage, the transfer rate coefficients in Equation 4.12 are constant, the differential
equation can be readily solved for n, giving

AE) = iy = (1 — 1 (4.14)
T
where H_= = steady-state value of n
&, + B,
T ! ti tant [s]
w = ——— =time constant [s
ﬂ'r?'! +ﬁ?‘!

We see that the voltage step initiates an exponential change in n from its initial value of n (the value of n
at # = 0) toward the steady-state value of n« (the value of n at t = ). Figure 4.12B shows the variation of
nw and ne' with membrane voltage.
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Fig. 4.12. (A) Variation of transfer rate coefficients oy, and B, as functions of membrane voltage.
(B) Variation of ne and n=* as functions of membrane voltage (Gx een’).

Summary of the Hodgkin-Huxley model for potassium conductance

Figure 4.13 presents an interpretation of the ideas of the Hodgkin-Huxley model for potassium conductance though
representing the authors' interpretation. In Figure 4.13A the response of the n-particles to a sudden depolarization is
shown before and at two successive instants of time during the depolarization. Initially, the fraction of n-particles in
the permissive position (inside the membrane), n, is small since a, is small and B, is large. Therefore, the potassium
channels (of which two are illustrated) are closed. Depolarization increases a, and decreases [, so that n rises

exponentially (following first-order kinetics) toward a maximum value of n=. When four n-particles occupy the
site around the channel inside the membrane, the channel opens; therefore, the potassium conductance Gy is
proportional to n*, as shown in Equation 4.13. Figure 4.13A illustrates this phenomenon first at one channel and
then at two channels. The magnitude of o, and B, is shown in Figures 4.13A by the thickness of the arrows and in
4.13B by the curves. In Figure 4.13C, the response of n and n* to a sudden depolarization and repolarization is
shown.

The reader may verify that the potassium conductance really is proportional to n*, by comparing this curve
and the curve in Figure 4.11 representing the potassium conductance at 88 mV depolarization (which is the value
closest to 85 mV used in Figure 4.13). These curves are very similar in form.
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Fig. 4.13. In the Hodgkin-Huxley model, the process determining the variation of potassium
conductance ~ with  depolarization = and  repolarization = with  voltage clamp.
(A) Movement of n-particles as a response to sudden depolarization. Initially, o, is small and B, is
large, as indicated by the thickness of the arrows. Therefore, the fraction n of n-particles in the
permissive state (inside the membrane) is small. Depolarization increases a, and decreases [3,.
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Thus n rises exponentially to a larger value. When four n-particles occupy the site around the
channel inside the membrane, the channel opens.

(B) The response of the transfer rate coefficients o, and B, to sudden depolarization and
repolarization.
(C) The response of n and n* to a sudden depolarization and repolarization (Gx c=n”)

4.4.4 Sodium conductance

The results that Hodgkin and Huxley obtained for sodium conductance in their voltage clamp experiments are
shown in Figure 4.14 (Hodgkin and Huxley, 1952d). The curves in Figure 4.14 are again calculated from the
Hodgkin-Huxley equations and fit closely to the measured data.

The behavior of sodium conductance is initially similar to that of potassium conductance, except that the
speed of the conductance increase during depolarization is about 10 times faster. The rise in sodium conductance
occurs well before the rise in potassium conductance becomes appreciable. Hodgkin and Huxley assumed again
that at the sodium channels certain electrically charged particles called m-particles exist whose position control the
opening of the channel. Thus they have two states, open (permissive) and closed (nonpermissive); the proportion m
expresses the fraction of these particles in the open state (for instance inside the membrane) and (1 - m) the fraction
in the closed state (for instance outside the membrane), where 0 =m =1,

The mathematical form for the voltage- and time-dependent transitions of the m-particles between the open
and closed positions is similar to that for potassium. We identify these with a subscript "m"; thus the voltage-
dependent transfer rate coefficients are o, and B,,. These follow a first-order process given by

" % (1) (4.15)

where a, = the transfer rate coefficient for m-particles from closed to open state [1/s]
B, =the transfer rate coefficient for m-particles from open to closed state [1/s]
m  =the fraction of m-particles in the open state

1 - m =the fraction of m-particles in the closed state

An equation for the behavior of sodium activation may be written in the same manner as for the
potassium, namely that m satisfies a first-order process:

%:am (1—m)— G m (4.16)

The transfer rate coefficients ay, and Py, are voltage-dependent but do not depend on time..
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Fig. 4.14. Behavior of sodium conductance in voltage clamp experiments. The clamp voltage is
expressed as a change from the resting value (in [mV]). Note that the change in sodium
conductance is small for subthreshold depolarizations but increases greatly for transthreshold
depolarization ( ZVm =26 mV).

On the basis of the behavior of the early part of the sodium conductance curve, Hodgkin and Huxley
supposed that the sodium channel is open only if three m-particles are in the permissive position (inside
the membrane). Then the probability of the channel being open equals the joint probability that three m-
p%rticles in the permissive position; hence the initial increase of sodium conductance is proportional to
m’.

The main difference between the behavior of sodium and potassium conductance is that the rise in
sodium conductance, produced by membrane depolarization, is not maintained. Hodgkin and Huxley
described the falling conductance to result from an inactivation process and included it by introducing an
inactivating h-particle. The parameter / represents the probability that an h-particle is in the non-
inactivating (i.e., open) state - for instance, outside the membrane. Thus (1 - /) represents the number of
the h-particles in the inactivating (i.e., closed) state - for instance, inside the membrane. The movement of
these particles is also governed by first-order kinetics:

1-d) —2=> 1 4.17
(1) 7 (4.17)

where a, =the transfer rate coefficient for h-particles from inactivating to non-inactivating state [1/s]
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B, =the transfer rate coefficient for h-particles from non-inactivating to inactivating state [1/s]
h  =the fraction of h-particles in the non-inactivating state

1 - h = the fraction of h-particles in the inactivating state

and satisfies a similar equation to that obeyed by m and »n, namely:

dh
—= (1= 1)- Gy (4.18)

Again, because the h-particles are electrically charged, the transfer rate coefficients a, and By, are voltage-
dependent but do not depend on time.

The sodium conductance is assumed to be proportional to the number of sites inside the membrane
that are occupied simultaneously by three activating m-particles and not blocked by an inactivating h-
particle. Consequently, the behavior of sodium conductance is proportional to m’h, and

G = ooy PR (4.19)
where  Gpamax = maximum value of sodium conductance [mS/cm.], and
m = obeys Equation (4.16), and

h = obeys Equation (4.18), and

Following a depolarizing voltage step (voltage clamp), m will rise with time (from m to m= )
according to an expression similar to Equation 4.14 (but with m replacing »). The behavior of 4 is just the

opposite since in this case it will be found that /4y =h«= and an exponential decrease results from the
depolarization. Thus the overall response to a depolarizing voltage ste includes an exponential rise in m
(and thus a sigmoidal rise in m’ ) and an exponential decay in 4 so that Gy,, as evaluated in Equation
4.19, will first increase and then decrease. This behavior is just exactly that needed to fit the data
described in Figure 4.14. In addition, it turns out that the normal resting values of m are close to zero,
whereas 4 is around 0.6. For an initial hyperpolarization, the effect is to decrease m; however, since it is
already very small, little additional diminution can occur. As for 4, its value can be increased to unity, and
the effect on a subsequent depolarization can be quite marked. This effect fits experimental observations
closely. The time constant for changes in / is considerably longer than for m and n, a fact that can lead to
such phenomena as "anode break," discussed later in this chapter. Figure 4.15A shows variations in the
transfer rate coefficients o, Pm, 0n, and PBn with membrane voltage. Figure 4.15B shows the variations in

mewo, heo, and mew> ho with membrane voltage.
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Fig. 4.15. Variation in (A) oy, and B, (B) oy, and By, (C) m= and A=, and (D) ms="hw as a function

of membrane voltage. Note that the value of m=’h« is so small that the steady-state sodium
conductance is practically zero.

Summary of the Hodgkin-Huxley model for sodium conductance

Similar to Figure 4.13, Figure 4.16 summarizes the voltage clamp behavior of the Hodgkin-Huxley model but for
sodium conductance. Figure 4.16A shows the response of the m- and h-particles to a sudden depolarization at rest
and at two successive moments during depolarization. (Because the h-particles have inactivating behavior, they are
drawn with negative color (i.e., a white letter on a filled circle).) Initially, the fraction of m-particles in the
permissive position (inside the membrane), m, is small since a,, is small and [, is large. Therefore, the sodium
channels (of which two are illustrated) are not open. Initially, the fraction of h-particles in the non-inactivating
(open-channel) position (outside the membrane), 4, is large since is large and h is small. Depolarization increases
o, and By, and decreases By, and ay, as shown in Figure 4.16A by the thickness of the arrows and in 4.16B by the
curves.

Because the time constant t,,, is much shorter than t,, m rises faster toward a maximum value of unity than 4
decays toward zero. Both parameters behave exponentially (following first-order kinetics) as seen from Figure
4.16C. When three m-particles occupy the site around the channel inside the membrane and one h-particle occupies
a site outside the membrane, the channel opens. Therefore, the initial increase of sodium conductance Gy, is
proportional to m’ (since initially / is large and the non-inactivating h-particles occupy the open-channel site
outside the membrane). In figure 4.16A, the short time constant 1,, is indicated by the almost simultaneous opening
of two sodium channels. Later on, because of the longer time constant h, the inactivating h-particles move to the
inside of the membrane, blocking the sodium channels. Consequently, as shown in Equation 4.19, the overall
behavior of the sodium conductance Gy, is proportional to mh.
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The reader may again verify that the sodium conductance is proportional to m’h by comparing this curve and
the curve in Figure 4.14, representing the sodium conductance at 88 mV depolarization (which is the value closest

to 85 mV used in Figure 4.16).
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Fig. 4.16. The process, in the Hodgkin-Huxley model, determining the variation of sodium
conductance with depolarization and repolarization with voltage clamp.
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(A) Movement of m- and h-particles as a response to sudden depolarization. Initially, oy, is small
and Py, is large, as indicated by the thickness of the arrows. Therefore, the fraction of particles of
type m in the permissive state (inside the membrane) is small. Initially also the value of oy, is large
and By, is small. Thus the h-particles are in the non-inactivating position, outside the membrane.
Depolarization increases o, and Bp and decreases B, and oy. Thus the number of m-particles
inside the membrane, m, rises exponentially toward unity, and the number of h-particles outside
the membrane, h, decreases exponentially toward zero.

(B) The response of transfer rate coefficients o, Pm, 0n, and By to sudden depolarization and
repolarization. (C) The response of m, h, m’, and m’h to a sudden depolarization and
repolarization. Note that according to Equation 4.20, Gy, is proportional to m’A.

4.4.5 Hodgkin-Huxley equations

Transfer rate coefficients

The transfer rate coefficients a and B of the gating variables n, m, and / are determined from Equations 4.20
through 4.25. These equations were developed by Hodgkin and Huxley and, when substituted into Equations 4.12,
4.14 (and similar ones for m and k), 4.16, and 4.18, lead to the curves plotted in Figures 4.11 and 4.13. This
compares well to measurements on the entire range of voltage clamp values. The dimension is [1/ms] for the
transfer rate coefficients o and f.

%—D'I_D'm A (4.20)

L0177 ’
0.125

By = L0125 7 (4.21)

o o 25701V w22)
LZ3017)_q :

4
P = W (4.23)
0,07

= ST (4.24)
&

Ji] —1 (4.25)

b= :

LG017)

In these equations V' = V}, - Vi, where V; is the resting voltage. All voltages are given in millivolts.
Therefore, V' is the deviation of the membrane voltage from the resting voltage in millivolts, and it is
positive if the potential inside the membrane changes in the positive direction (relative to the outside).
The equations hold for the giant axon of the squid at a temperature of 6.3 °C.

Please note again that in the voltage clamp experiment the a and P are constants because the
membrane voltage is kept constant during the entire procedure. During an unclamped activation, where
the transmembrane voltage is continually changing, the transfer rate coefficients will undergo change
according to the above equations.
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Constants

In addition to the variables discussed above, the constants of the Hodgkin-Huxley model are given here. The
voltages are described in relation to the resting voltage (as shown):

e}
3
]

1 uF/cm,
V.- Vyo =-115  mV

Vi- Vg = +12 mV

<
<
I

-10.613 mV
Grnamax = 120 mS/cm,

Gimax = 36 mS/cm,

G 0.3 mS/cm,

Note that the value of Vi is not measured experimentally, but is calculated so that the current is
zero when the membrane voltage is equal to the resting voltage. The voltages in the axon are illustrated in
Figure 4.17 in graphical form.

In Table 4.1 we summarize the entire set of Hodgkin-Huxley equations that describe the Hodgkin-
Huxley model..

Fotential [mV]

60 —
A e
09 V-V, =-115mY
20 7 v, = 50my
0= < ry ry
v, =-54.4my
=20 =
v, =-65 mv
-40 ~ v, =-77 mv
- 'L.HL
60 v, - b =-10.6 miis
R VAR VSR SV o Rl
oYK T
-850 - Vi

Fig. 4.17. An illustration of the voltages in the squid axon.
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Table 4.1. HODGKIN-HUXLEY EQUATIONS

TRANSMEMBRANE CURRENT

dr
lirm = Cm d—;“+|:i!?'m - VN&)GNa +':'1;rm _VK)GK +':E;rm _VL)GL

IONIC CONDUCTANCES

Gna = Gna max mah dim
— =, (1—m)— f,m

e

th
2 e (1- k- Bk
7 e (1 — )=

Gk=G maxn4
o j%:%(l—n}—ﬁnn

G, = constant

TRANSFER RATE COEFFICIENTS

3 D.l-(Eﬁ—V'}L 8. - 4 L
T PO _{ s m TS g
G = ﬂi by = 1 L
JPI0 JG0 = 70
_0010-87 L g _mi
T A0 =P _{ nTUTIED
CONSTANTS
Cnm = 1 pF/cm,
V, - Vys =-115 Gnamax= 120 ms/cm,
V.- Vg =+12 Gkmax = 36 ms/cm,
V.-V, =-10.613 mV G, = 0.3 ms/cm,

4.4.6 Propagating nerve impulse

When analyzing the propagating nerve impulse instead of the nonpropagating activation (i.e., when the membrane
voltage is in the space clamp condition), we must consider the axial currents in addition to the transmembrane
currents. Let us examine Figure 4.18 (Plonsey, 1969).
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Fig. 4.18. Application of the Hodgkin-Huxley model to a propagating nerve impulse.

The figure illustrates the model for a unit length of axon. In the model the quantities 7; and r,
represent the resistances per unit length inside and outside the axon, respectively. Between the inside and
outside of the membrane, describing the behavior of the membrane, is a Hodgkin-Huxley model. For the
circuit in this figure, Equation 3.42 was derived in the previous chapter for the total membrane current,
and it applies here as well:

2
io= 1 0 i”” (3.42)
.?"!-+.?"O A

In an axon with radius a, the membrane current per unit length is

i = 21al,, [UA/cm axon length] (4.26)

where [, = membrane current per unit area [pA/cm_].

The axoplasm resistance per unit length is:

r =2 [kQem] (4.27)
Tk

where o} = axoplasm resistivity [kQcm]
In practice, when the extracellular space is extensive, the resistance of the external medium per unit
length, r,, is so small that it may be omitted and thus from Equations 3.42, 4.26, and 4.27 we obtain:

i 1 WV _ 1 BV wd BV, a 3V, (2.28)

f = = = =
cra Zmaly+r,) ij LIar; ij LA P axz 20 axz

m
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Equation 4.10 evaluates the transmembrane current density based on the intrinsic properties of the
membrane while Equation 4.28 evaluates the same current based on the behavior of the "load". Since
these expressions must be equal, the Hodgkin-Huxley equation for the propagating nerve impulse may be
written:

a W,
20 a 7 =C a_;!J"iVm Vi) Opg T (Vo = Vi )G + (W, - V0 (4.29)
i Ox

m

Under steady state conditions the impulse propagates with a constant velocity and it maintains
constant form; hence it obeys the wave equation:

#v, 1 #v,

Zm__~ Z'm (4.30)
o @

where ® = the velocity of conduction [m/s].

Substituting Equation 4.30 into 4.29 permits the equation for the propagating nerve impulse to be
written in the form:

a & &,
= Em = Cm e +(Vm _VNc:)GNa +(Vm - VK’)GK +(Vm - VL>GI. (4.31)
N A % o

This is an ordinary differential equation which can be solved numerically if the value of ® is guessed
correctly. Hodgkin and Huxley obtained numerical solutions that compared favorably with the measured
values (18.8 m/s).

With modern computers it is now feasible to solve a parabolic partial differential equation,
Equation 4.29, for V}, as a function of x and ¢ (a more difficult solution than for Equation 4.31). This
solution permits an examination of V;, during initiation of propagation and at its termination. One can
observe changes in velocity and waveform under these conditions. The velocity in this case does not have
to be guessed at initially, but can be deduced from the solution.

The propagation velocity of the nerve impulse may be written in the form:

o= |54 (4.32)

2
where © = propagation velocity [m/s]
K = constant [1/s]

a = axon radius [cm]
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pi = axoplasm resistivity [Qcm]

This can be deduced from Equation 4.31 by noting that the equation is unchanged if the coefficient of the
first term is held constant (= 1/K), it being assumed that the ionic conductances remain unaffected
(Hodgkin, 1954). Equation 4.32 also shows that the propagation velocity of the nerve impulse is directly
proportional to the square root of axon radius a in unmyelinated axons. This is supported by experiment;
and, in fact, an empirical relation is:

@ = ofd (4.33)

where © = propagation velocity [m/s]

d = axon diameter [um]

This velocity contrasts with that observed in myelinated axons; there, the value is linearly proportional to
the radius, as illustrated earlier in Figure 2.12. A discussion of the factors affecting the propagation
velocity is given in Jack, Noble, and Tsien (1975).

Membrane conductance changes during a propagating nerve impulse

K. S. Cole and H. J. Curtis (1939) showed that the impedance of the membrane decreased greatly during activation
and that this was due almost entirely to an increase in the membrane conductance. That is, the capacitance does not
vary during activation. Figure 4.19 illustrates the components of the membrane conductance, namely Gy, and Gy,
and their sum G, during a propagating nerve impulse and the corresponding membrane voltage V;,. This is a
numerical solution of Equation 4.31 (after Hodgkin and Huxley, 1952d)..
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Fig. 4.19. Sodium and potassium conductances (Gx, and Gg), their sum (Gy,), and the membrane
voltage (V) during a propagating nerve impulse. This is a numerical solution of Equation 4.32
(After Hodgkin and Huxley, 1952d.).

The components of the membrane current during the propagating nerve impulse

Figure 4.20 illustrates the membrane voltage V,, during activation, the sodium and potassium conductances Gy, and
Gy, the transmembrane current /,, as well as its capacitive and ionic components /,,c and /., which are illustrated
for a propagating nerve impulse (Noble, 1966).

From the figure the following observations can be made:

1. The potential inside the membrane begins to increase before the sodium conductance starts to rise,
owing to the local circuit current originating from the proximal area of activation. In this phase,
the membrane current is mainly capacitive, because the sodium and potassium conductances are
still low.

2. The local circuit current depolarizes the membrane to the extent that it reaches threshold and
activation begins.

3. The activation starts with an increasing sodium conductance. As a result, sodium ions flow
inward, causing the membrane voltage to become less negative and finally positive.

4. The potassium conductance begins to increase later on; its time course is much slower than that
for the sodium conductance.

5. When the decrease in the sodium conductance and the increase in the potassium conductance are
sufficient, the membrane voltage reaches its maximum and begins to decrease. At this instant (the
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peak of Vm), the capacitive current is zero (dV/dt = 0) and the membrane current is totally an
ionic current.

The terminal phase of activation is governed by the potassium conductance which, through the
outflowing potassium current, causes the membrane voltage to become more negative. Because
the potassium conductance is elevated above its normal value, there will be a period during which
the membrane voltage is more negative than the resting voltage - that is, the membrane is
hyperpolarized.

Finally, when the conductances reach their resting value, the membrane voltage reaches its resting
voltage..
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Fig. 4.20. Sodium and potassium conductances Gn, and Gk, the ionic and capacitive components
Iy and Iiyc of the membrane current /;;,, and the membrane voltage V;,, during a propagating nerve
impulse.

4.4.7 Properties of the Hodgkin-Huxley model

The form of a nonpropagating nerve impulse

Figure 4.21 shows both calculated (upper) and measured (lower) membrane voltages at 6 °C temperature for an
active membrane during a nonpropagating nerve impulse (space clamp) (Hodgkin and Huxley, 1952d). The
calculated curves are numerical solutions of Equation 4.10. The values in the curves indicate the stimulus intensity
and are expressed in [nC/cm_].

We note from the figure that the calculated values differ very little from the measured values. There are,
however, the following minor differences, namely that the calculated curves have:

1. Sharper peaks
2. A small downward deflection at the end of the recovery period

Effect of temperature

Figure 4.22 shows both calculated (upper) membrane voltage at 18.5 °C temperature and measured (lower)
membrane voltage at 20.5 °C temperature. Both curves have the same voltage axis, but the effect of temperature is
corrected on the time axis. In this case, the same errors can be seen in the calculated membrane voltage as in the
previous case. However, the correction of the rate constants with the factor 3.48 has maintained the equality of the
curves.

The effect of the temperature is taken care in the model so that the right-hand sides of the Equations 4.12,
4.16, and 4.18 are multiplied by the factor

3(T-6.3)/10 (4.33)

where T is the temperature in °C.
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Fig. 4.21. Membrane voltage during a nonpropagating nerve impulse of a squid axon
(A) calculated from Equation 4.10 with /,, = 0 and
(B) measured (lower) at 6 °C temperature.

The numbers indicate the stimulus intensity in [nC/cm_]. Note the increasing latency as the
stimulus is decreased until, finally, the stimulus falls below threshold.
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Fig. 4.22. The membrane voltage
(A) calculated for the initial depolarization of 15 mV at a temperature of 18.5 °C, and
(B) measured at 20.5 °C.

Vertical scales are the same. The horizontal scales differ by a factor appropriate to the temperature
difference.

The form of a propagating nerve impulse

The propagating nerve impulse calculated from Equation 4.31 corresponds, accurately, to the measured one. The
form of the simulated propagating nerve impulse is illustrated in Figure 4.23A, (Hodgkin and Huxley, 1952d). The
corresponding membrane voltage measured at 18.5 °C is given in Figure 4.23B.

Refractory period

The Hodgkin-Huxley model also provides an explanation of the refractory period. Figures 4.17 and 4.18 show that
the potassium conductance returns to the value corresponding to the resting state only after several milliseconds
following initiation of activation. Since activation requires that the (inward) sodium current exceeds the (outward)
potassium current, the sodium conductance must reach a relatively higher value during the recovery interval.

This requires a stronger stimulus (i.e., the threshold must be elevated). The period being described is known as the
relative refractory period. A second factor that explains the refractory behavior is the fact that following
depolarization the sodium inactivation parameter, 4, diminishes and recovers its resting value slowly. As a result,
the likelihood of premature reexcitation of the membrane is further decreased.
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Figure 4.24 illustrates the calculated and measured response for a stimulus during the refractory period
(Hodgkin and Huxley, 1952d). The curves at Figure 4.24A show the response calculated from Equation 4.10 at 6
°C temperature. The axon is first stimulated with a stimulus intensity of 15 nC/cm, which produces an action pulse
(curve A in Figure 4.24A). Then after about 5 ms another stimulus pulse with an intensity of 90 nC/cm_ is given.
Because the axon is after the action pulse in refractory state, it does not produce an action pulse and only the
stimulus artifact, curve B in Figure 4.24A is seen. If the 90 nC/cm,_ stimulus is given about 6 ms after the first 15
nc/cm_ stimulus, the axon produces an activation, curve C, though lower with amplitude than the first one. If the
second stimulus is given 8 ms after the first one, the response, curve D, is close to the first one. Curve E represents
the calculated response to a 90 nC/cm,_ stimulus when the axon is in the resting state (without the preceding 15
nC/cm_ stimulus pulse). (In the curves B-E of Figure 4.24A the values of the response are calculated only for a time
of about two milliseconds.) The curves in Figure 4.24B show the corresponding experiments performed with a real
axon at 9 C temperature. The time scale is corrected to reflect the temperature difference.

Threshold

Figure 4.25 shows both the calculated and measured threshold at 6 °C for short stimulus pulses. The calculated
curves in Figure 4.25A are numerical solutions of Equation 4.10. The values shown indicate the stimulus intensity
and are expressed in [nC/cm_]. The figure indicates that the stimulus intensities of 6 nC/cm_ or less or a negative
value of -10 nC/cm,_ cannot produce an action pulse while the stimulus intensity of 7 nC/cm_ produces it. In the
measured data the threshold is 12 nC/cm,. The behavior of the model corresponds to a real axon for stimuli both
over and under the threshold (Hodgkin and Huxley, 1952d)..
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Fig. 4.23. The membrane voltage of a propagating nerve impulse.
(A) Calculated from Equation 4.31. The temperature is 18.5 C and the constant K in Equation 4.32
has the value 10.47 [1/ms].

(B) Measured membrane voltage for an axon at the same temperature as (A).
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Fig. 4.24. (A) The response during the refractory period calculated from Equation 4.10 at 6 C
temperature. The axon is first stimulated with a stimulus intensity of 15 nC/cm_, curve A. Curves
B, C, and D represent the calculated response to a 90 nC/cm,_ stimulus at various instants of time
after the curve A. Curve E represents the calculated response to a 90 nC/cm_ stimulus for an axon
in the resting state.

(B) The set of curves shows the corresponding experiments performed with a real axon at 9 C
temperature. The time scale is corrected to reflect the temperature difference.
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Fig. 4.25. (A) Calculated and (B) measured threshold. The calculated curves are numerical
solutions of Equation 4.10. The stimulus intensity is expressed in [nC/cm_].

Anode break

If the membrane voltage is hyperpolarized with a stimulus whose duration exceeds all ionic time constants and then
the hyperpolarization is suddenly terminated, the membrane may elicit an action impulse. The Hodgkin-Huxley
model illustrates this phenomenon which is called anode break excitation ("anode breakdown" in the original
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publication). This is described in Figure 4.26. Curve A, the numerical solution of Equation 4.10, illustrates the
inside potential of the model when it is made 30 mV more negative than the resting potential at 6 °C. In curve B the
resting potential of an actual cell is made 26.5 mV more negative in 18.5 °C (Hodgkin and Huxley, 1952d).

In the Hodgkin-Huxley model, the inactivation parameter increases from its normal value of around 0.6 to
perhaps 1.0 during the long hyperpolarization. When the voltage is allowed to return to its resting value, its rise
causes the sodium activation parameter m to be elevated. But /4 has a long time constant and tends to remain at its
elevated level. The net result is an elevated sodium conductance and elevated sodium current, which can reach the
excitatory regenerative behavior even at the normal resting transmembrane voltage. It is also relevant that the
potassium conductance (steady-state value of #) is reduced during hyperpolarization, and recovers only with a time
course comparable to that of sodium inactivation.
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Fig. 4.26. Anode break phenomenon
(A) calculated from Equation 4.10 and
(B) measured from a squid axon at 6 C temperature.
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The numbers attached to the curves give the initial depolarization in [mV]. The hyperpolarization
is released at t = 0.

4.4.8 The quality of the Hodgkin-Huxley model

A. L. Hodgkin and A. F. Huxley showed that their membrane model describes the following properties of the axon
without any additional assumptions (all of these properties were not discussed here):

The form, amplitude, and threshold of the membrane voltage during activation as a function of temperature
The form, amplitude, and velocity of the propagating nerve impulse

The change, form, and amplitude of the membrane impedance during activation

The total sodium inflow (influx) and potassium outflow (efflux) during activation

Threshold and response during the refractory period

The amplitude and form of the subthreshold response

Anode break response

Adaptation (accommodation)

PRNAN B LN =

On the basis of the facts given in this chapter, the Hodgkin-Huxley model is, without doubt, the most
important theoretical model describing the excitable membrane.

4.5 PATCH CLAMP METHOD

4.5.1 Introduction

To elucidate how an ion channel operates, one needs to examine the factors that influence its opening and closing
as well as measure the resulting current flow. For quite some time, the challenges involved in isolating a very small
membrane area containing just a few (or a single) ion channels, and measuring the extraordinarily small ionic
currents proved to be insurmountable.

Two cell physiologists, Edwin Neher and Bert Sakmann of the Max Planck Institute (in Géttingen,
Germany), succeeded in developing a technique that allowed them to measure the membrane current of a single ion
channel. They used a glass microelectrode, called a micropipette, having a diameter of the order of 1 um. It is said
that by accident they placed the electrode very close to the cell membrane so that it came in tight contact with it.
The impedance of the measurement circuit then rose to about 50 GQ (Neher and Sakmann, 1976). The current
changes caused by single ion channels of the cell could then be measured by the voltage clamp method. This device
came to be known as a patch clamp since it examined the behavior of a "patch" of membrane; it constitutes an
excellent "space clamp" configuration.

The patch clamp method was further developed to measure the capacitance of the cell membrane (Neher and
Marty, 1982). Since the membrane capacitance is proportional to the membrane surface, an examination of minute
changes in membrane surface area became possible. This feature has proven useful in studying secretory processes.
Nerve cells, as well as hormone-producing cells and cells engaged in the host defense (like mast cells), secrete
different agents. They are stored in vesicles enclosed by a membrane. When the cell is stimulated, the vesicles
move to the cell surface. The cell and vesicle membranes fuse, and the agent is liberated. The mast cell secretes
histamine and other agents that give rise to local inflammatory reactions. The cells of the adrenal medulla liberate
the stress hormone adrenaline, and the beta cells in the pancreas liberate insulin. Neher elucidated the secretory
processes in these cell types through the development of the new technique which records the fusion of the vesicles
with the cell membrane. Neher realized that the electric properties of a cell would change if its surface area
increased, making it possible to record the actual secretory process. Through further developments of their
sophisticated equipment, its high resolution finally permitted recording of individual vesicles fusing with the cell
membrane. Neher and Sakmann received the Nobel Prize for their work, in 1991.
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4.5.2 Patch clamp measurement techniques

We discuss here the principles of the patch clamp measurement technique (Sakmann and Neher, 1984; Neher and
Sakmann, 1992). We do not present the technical details, which can be found in the original literature (Hamill et al.
1981; Sakmann and Neher, 1984).

There are four main methods in which a patch clamp experiment may be performed. These are:

Cell-attached recording
Whole cell configuration
Outside-out configuration
Inside-out configuration

NS

These four configurations are further illustrated in Figure 4.27 and discussed in more detail below.
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If a heat-polished glass microelectrode, called a micropipette, having an opening of about 0.5-1 pum, is
brought into close contact with an enzymatically cleaned cell membrane, it forms a seal on the order of 50
MQ . Even though this impedance is quite high, within the dimensions of the micropipette the seal is too
loose, and the current flowing through the micropipette includes leakage currents which enter around the
seal (i.e., which do not flow across the membrane) and which therefore mask the desired (and very small)
ion-channel transmembrane currents.

If a slight suction is applied to the micropipette, the seal can be improved by a factor of 100-1000.
The resistance across the seal is then 10-100 GQ ("G" denotes "giga" = 10”). This tight seal, called
gigaseal, reduces the leakage currents to the point where it becomes possible to measure the desired signal
- the ionic currents through the membrane within the area of the micropipette.

Cell-attached recording

In the basic form of cell-attached recording, the micropipette is brought into contact with the cell membrane, and a
tight seal is formed by suction with the periphery of the micropipette orifice, as described above. Suction is
normally released once the seal has formed, but all micropipette current has been eliminated except that flowing
across the delineated membrane patch. As a consequence, the exchange of ions between the inside of the
micropipette and the outside can occur only through whatever ion channels lie in the membrane fragment. In view
of the small size, only a very few channels may lie in the patch of membrane under observation. When a single ion
channel opens, ions move through the channel; these constitute an electric current, since ions are charged particles.

Whole cell recording

In the whole cell recording, the cell membrane within the micropipette in the cell-attached configuration is ruptured
with a brief pulse of suction. Now the micropipette becomes directly connected to the inside of the cell while the
gigaseal is maintained; hence it excludes leakage currents. In contrast, the electric resistance is in the range of 2-10
MQ . In this situation the microelectrode measures the current due to the ion channels of the whole cell. While the
gigaseal is preserved, this situation is very similar to a conventional microelectrode penetration. The technique is
particularly applicable to small cells in the size range of 5-20 um in diameter, and yields good recordings in cells as
small as red blood cells.

Outside-out configuration

The outside-out configuration is a microversion of the whole cell configuration. In this method, after the cell
membrane is ruptured with a pulse of suction, the micropipette is pulled away from the cell. During withdrawal, a
cytoplasmic bridge surrounded by membrane is first pulled from the cell. This bridge becomes more and more
narrow as the separation between pipette and cell increases, until it collapses, leaving behind an intact cell and a
small piece of membrane, which is isolated and attached to the end of the micropipette. The result is an attached
membrane "patch" in which the former cell exterior is on the outside and the former cell interior faces the inside of
the micropipette. With this method the outside of the cell membrane may be exposed to different bathing solutions;
therefore, it may be used to investigate the behavior of single ion channels activated by extracellular receptors.

Inside-out configuration

In the inside-out configuration the micropipette is pulled from the cell-attached situation without rupturing the
membrane with a suction pulse. As in the outside-out method, during withdrawal, a cytoplasmic bridge surrounded
by the membrane is pulled out from the cell. This bridge becomes more and more narrow and finally collapses,
forming a closed structure inside the pipette. This vesicle is not suitable for electric measurements. The part of the
membrane outside the pipette may, however, be broken with a short exposure to air, and thus the cytoplasmic side
of the membrane becomes open to the outside (just the reverse of the outside-out configuration). Inside-out patches
can also be obtained directly without air exposure if the withdrawal is performed in Ca-free medium. With this
configuration, by changing the ionic concentrations in the bathing solution, one can examine the effect of a quick
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change in concentration on the cytoplasmic side of the membrane. It can therefore be used to investigate the
cytoplasmic regulation of ion channels..

Formation of an outside-out or inside-out patch may involve major structural rearrangements of the
membrane. The effects of isolation on channel properties have been determined in some cases. It is
surprising how minor these artifacts of preparation are for most of the channel types of cell membranes.

4.5.3 Applications of the patch clamp method

From the four patch clamp techniques, the cell-attached configuration disturbs least the structure and environment
of the cell membrane. This method provides a current resolution several orders of magnitude larger than previous
current measurement methods. The membrane voltage can be changed without intracellular microelectrodes, and
both transmitter- and voltage-activated channels can be studied in their normal ionic environment. Figure 4.28
shows recording of the electric current of a single ion channel at the neuromuscular endplate of frog muscle fiber.

In the whole cell configuration a conductive pathway of very low resistance as (i.e.,2-10 MQ) is formed
between the micropipette and the interior of the cell. When the whole-cell configuration is utilized with large cells,
it allows the researcher to measure membrane voltage and current, just as conventional microelectrode methods do.
But when it is applied to very small cells, it provides, in addition, the conditions under which high-quality voltage
clamp measurements can be made. Voltage clamp recordings may be accomplished with the whole cell method for
cells as small as red blood cells. Many other cell types could be studied for the first time under voltage clamp
conditions in this way. Among them are bovine chromaffin cells, sinoatrial node cells isolated from rabbit heart,
pancreatic islet cells, cultured neonatal heart cells, and ciliary ganglion cells.

A chromaffin cell of 10 um in diameter can serve to illustrate the electric parameters that may be
encountered. This cell has a resting-state input resistance of several giga-ohms (GQ) and active currents of about a
few hundred picoamperes (pA). If the electrode has a series resistance Rs of about 5 ML, that represents a
negligible series resistance in the measurement configuration. The membrane capacitance C,, is about 5 pF and thus
the time constant 1,, = Rs'Cy, is about 25 ps. Thus a voltage clamp measurement may be performed simply by
applying a voltage to the micropipette and measuring the current in the conventional way.

The outside-out configuration is particularly well suited to those experiments where one wants to examine
the ionic channels controlled by externally located receptors. The extracellular solution can be changed easily,
allowing testing of effects of different transmitter substances or permeating ions. This configuration has been used
to measure the dependence of conductance states of the AChR channel in embryonic cells on the permeating ion.
The outside-out patches have also been used to isolate transmitter-gated Cl'channels in the soma membrane of
spinal cord neurones, in Aplysia neurones, and in the muscle membrane of Ascaris.

The inside-out configuration is suitable for experiments where the effects of the intracellular components of
the ionic channels are under study. Such control over the composition of solutions on both sides of a membrane has
been possible, in the past, only with quite involved techniques. Patch clamp methods with the inside-out
configuration is a simple way to achieve this goal. Most of the studies to date have involved the role of intracellular
Ca™. This configuration has also been used for permeability studies, and for exposing the inner surface of
electrically excitable membranes to agents that remove Na’ channel inactivation.
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Fig. 4.28. Registration of the flow of current through a single ion channel at the neuromuscular
endplate of frog muscle fiber with patch clamp method. (From Sakmann and Neher, 1984.)

4.6 MODERN UNDERSTANDING OF THE IONIC CHANNELS

4.6.1 Introduction

Although the Hodgkin-Huxley formalism was published over 40 years ago, in many ways, it continues to be
satisfactory in its quantitative predictability and its conceptual structure. Still the Hodgkin-Huxley equations are
empirically derived from a series of carefully devised experiments to measure total and component membrane ionic
currents of the squid axon. To obtain the desired data on these currents, space and voltage clamping were
introduced. The voltage clamp eliminated capacitive currents, whereas the space clamp eliminated otherwise
confounding axial current flow. The measured quantity was the total current of a macroscopic membrane patch
which, when divided by the membrane area, gave the ionic current density. Since the result is an integrated
quantity, it leaves open the behavior of discrete membrane elements that contribute to the total.

Hodgkin and Huxley were aware that the membrane was primarily lipid with a dielectric constant in the
neighborhood of 5 and an electric resistivity of 2x10° Qcm, an obviously excellent insulator. Two leading
hypotheses were advanced to explain ion currents through such a medium, namely carrier-mediated transport and
flow through pores (or channels). Hodgkin and Huxley did not distinguish between these two possibilities, though
in their final paper (Hodgkin and Huxley, 1952d, p. 502) they did note that the most straightforward form of the
carrier hypothesis was inconsistent with their observations.

At this time, researchers have studied membrane proteins with sufficient care to know that they are much too
large to catalyze ion fluxes known to exceed 10° ions per "channel" per second. Although these proteins have been
investigated by a number of techniques their structure is still not definitively established; nevertheless, many
features, including the presence of aqueous channels, are reasonably well understood. In the remainder of this
section we describe some of the details of structure and function. Our treatment here is necessarily brief and only
introductory; the interested reader will find extensive material in Hille (1992).
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Fig. 4.29. Working hypothesis for a channel. The channel is drawn as a transmembrane
macromolecule with a hole through the center. The functional regions - namely selectivity filter,
gate, and sensor - are deducted from voltage clamp experiments and are only beginning to be
charted by structural studies. (Redrawn from Hille, 1992.)

Before proceeding it is useful to introduce a general description of a channel protein (illustrated in
Figure 4.29). Although based on recognized channel features, the figure is nevertheless only a "working
hypothesis." It contains in cartoon form the important electrophysiological properties associated with
"selectivity" and "gating", which will be discussed shortly. The overall size of the protein is about 8 nm in
diameter and 12 nm in length (representing 1800-4000 amino acids arranged in one or several polypeptide
chains); its length substantially exceeds the lipid bilayer thickness so that only a small part of the
molecule lies within the membrane. Of particular importance to researchers is the capacity to distinguish
protein structures that lie within the membrane (i.e., hydrophobic elements) from those lying outside (i.e.,
hydrophilic extracellular and cytoplasmic elements). We have seen that membrane voltages are on the
order of 0.1 V; these give rise to transmembrane electric fields on the order of 10° V/m. Fields of this
intensity can exert large forces on charged residues within the membrane protein, as Figure 4.29 suggests,
and also cause the conformational changes associated with transmembrane depolarization (the alteration
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in shape changes the conductance of the aqueous pore). In addition, ionic flow through aqueous channels,
may be affected by fixed charges along the pore surface.

4.6.2 Single-channel behavior

As noted previously, it is currently believed that membrane proteins that support ion flux contain water-filled pores
or channels through which ion flow is assumed to take place. The application of patch-clamp techniques has made
it possible to observe the behavior of a single channel. In that regard, such studies have suggested that these
channels have only two states: either fully open or fully closed. (Measurements such as those performed by
Hodgkin-Huxley can thus be interpreted as arising from the space-average behavior of a very large number of
individual channels).

In fact, most channels can actually exist in three states that may be described functionally as

Resting =———Open ——Inactivated

An example is the sodium channel, mentioned earlier in this chapter. At the single-channel level, a
transthreshold change in transmembrane potential increases the probability that a resting (closed) channel
will open. After a time following the opening of a channel, it can again close as a result of a new channel
process - that of inactivation. Although inactivation of the squid axon potassium channel was not
observed on the time scale investigated, new information on single channels is being obtained from the
shaker potassium channel from Drosophila melanogaster which obeys the more general scheme
described above (and to which we return below). In fact, this preparation has been used to investigate the
mechanism of inactivation. Thus a relative good picture has emerged.

4.6.3 The ionic channel

There are many types of channels, but all have two important properties in common: gating and selective
permeability. Gating refers to the opening and closing of the channel, depending on the presence of external
"forces." Channels fall into two main classes: (1) ligand-gated channels, regulating flux of neurotransmitters (e.g.,
the acetylcholine-sensitive channel at the neuromuscular junction); and (2) voltage-gated channels, which respond
to electrolytes (e.g., sodium, potassium, and calcium). The second feature, selective permeability, describes the
ability of a channel to permit flow of only a single ion type (or perhaps a family of ions).

Neurotoxins that can block specific channel types are important tool in the study of membrane proteins. The
first neurotoxin used in this way was tetrodotoxin (TTX) (see Section 4.3.3), a highly selective and powerful
inhibitor of sodium channel conductance. Since TTX can eliminate (inactivate) sodium currents selectively from
the total ionic current, it can be useful in studies attempting to identify the individual ionic membrane current
components. The fact that TTX eliminates sodium flux exclusively also lends support to the idea that sodium ions
pass only through specific sodium channels. By using a saturating amount of a radioactively labeled toxin; one can
evaluate the target channel density. (For sodium, the channel density is quite sparse: 5-500 per um_ of membrane.)
These labeled toxins are useful also in purifying channel preparations, making possible structural studies.

We now describe briefly three types of techniques useful for elucidating channel structure: (1) biophysical,
(2) molecular biological and (3) electron microscopical and electron diffraction. Although a fairly consistent
picture emerges, much remains speculative, and an accurate picture of channel structure remains to emerge.

4.6.4 Channel structure: biophysical studies

The Hodgkin-Huxley equations provide excellent simulations under a variety of conditions; these equations have
been discussed in the earlier sections of this chapter and are summarized in Sections 4.4.3 and 4.4.4. Hodgkin and
Huxley considered the physical implications of the results obtained with these equations. Thus the variables m, n,
and A, rather than being considered abstract parameters, were thought to reflect actual physical quantities and were
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therefore interpreted to describe charged particles in the membrane that would be found at either the inner or outer
surface and were required to open or close membrane "channels." This literal interpretation of the Hodgkin-Huxley
equations is presented earlier in this chapter. Hodgkin and Huxley however, were aware of the limitations of such
speculations (Hodgkin and Huxley, 1952d): "Certain features of our equations are capable of physical
interpretation, but the success of our equation is no evidence in favor of the mechanism of permeability change we
tentatively had in mind when formulating them." More definitive studies, including true single channel recordings,
are now available.

Figures 4.30 and 4.31 show single-channel recordings obtained in response to a voltage clamp; Figure 4.30
indicates the response of a sodium channel to a depolarization of 40 mV; whereas Figure 4.31 shows the response
of a squid axon potassium channel to a change in voltage from -100 mV to 50 mV. If one disregards the noise, then
clearly the channel is either in a conducting or nonconducting condition. (In fact, although the transitions are
obviously stochastic, careful study shows that the openings and closings themselves are sudden in all situations).
The average of 40 sequential trials, given at the bottom of Figure 4.30, can be interpreted also as the total current
from 40 simultaneous sodium channels (assuming statistically independent channel behavior). The latter
approaches what would be measured in an Hodgkin-Huxley procedure where a large number of channels would be
simultaneously measured. The same observations apply to the potassium channels illustrated in Figure 4.31. The
averages shown bear a striking resemblance to Hodgkin-Huxley voltage clamp data.
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Fig. 4.30. Gating in single sodium channels: Patch clamp recording of unitary Na currents in a toe muscle
of adult mouse during a voltage step from -80 to -40 mV. Cell-attached recording from a Cs-depolarized
fiber.

(A) Ten consecutive trials filtered at 3-KHz bandwidth. Two simultaneous channel openings have
occurred in the first record; the patch may contain over 10 sodium channels. The dashed line
indicates the current level when channels are all closed (background current).

(B) The ensemble mean of 352 repetitions of the same protocol. T = 15 °C. (From Hille, 1992, as
provided by J. B. Patlak; see also Patlak and Ortiz, 1986.).
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Fig. 4.31. Gating in single potassium channels: Patch clamp recording of unitary K currents in a squid giant
axon during a voltage step from -100 to +50 mV.

(A) Nine consecutive trials showing channels of 20-pS conductance filtered at 2-KHz bandwidth.
(B) Ensemble mean of 40 trials. T = 20 °C. (From Hille, 1992, based on data from Bezanilla F and
Augustine CK, 1986.).

The single-channel behavior illustrated in Figure 4.31 demonstrates the stochastic nature of single-
channel openings and closings. Consistent with the Hodgkin-Huxley model is the view that this
potassium channel has the probability n4 of being open. As a result, if Gk max 1S the conductance when all
of the channels are open, then the conductance under other conditions Gk = Gk max-n4 And, of course, this
is precisely what the Hodgkin-Huxley equation (4.13) states.
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One can interpret n as reflecting two probabilities: (1) that a subunit of the potassium channel is
open, and (2) that there are four such subunits, each of which must be in the open condition for the
channel itself to be open. Hodgkin and Huxley gave these probabilities specific form by suggesting the
existence of gating particles as one possible physical model. Such particles have never been identified as
such; however, the channel proteins are known to contain charged "elements" (see Figure 4.29), although
in view of their overall electroneutrality, may be more appropriately characterized as dipole elements.
The application of a depolarizing field on this dipole distribution causes movement (i.e., conformational
changes) capable of opening or closing channel gates. In addition, such dipole movement, in fact,
constitutes a capacitive gating current which adds to that associated with the displacement of charges held
at the inside/outside of the membrane. If the applied field is increased gradually, a point is finally reached
where all dipoles are brought into alignment with the field and the gating current reaches a maximum
(saturation) value. In contrast, the current associated with the charge stored at the internal/external
membrane surface is not limited and simply increases linearly with the applied transmembrane potential.
Because of these different characteristics, measurements at two widely different voltage clamps can be
used to separate the two components and reveal the gating currents themselves (Bezanilla, 1986).

4.6.5 Channel structure: studies in molecular genetics

In recent years, gene cloning methods have been used in those investigations of channel structure designed to
determine the primary amino acid sequence of channel proteins. One can even test the results by determining
whether a cell that does not normally make the protein in question will do so when provided the cloned message or
gene. Oocytes of the African toad Xenopus laevis are frequently used to examine the expression of putative channel
mRNA. The resulting channels can be patch clamped and their voltage and ligand-gating properties investigated to
confirm whether the protein synthesized is indeed the desired channel protein.

Although the primary structures of many channels have now been determined, the rules for deducing
secondary and tertiary structure are not known. Educated guesses on the folding patterns for a protein chain can be
made, however. One approach involves searching for a stretch of 20 or so hydrophobic amino acids since this
would most probably extend across the membrane and exhibit the appropriate intramembrane (intralipid) behavior.
In this way, the linear amino acid sequence can be converted into a sequence of loops and folds based on the
location of those portions of the molecule lying within the membrane, within the cytoplasm, and within the
extracellular space. The hydrophobic stretches of the amino acid sequence assigned to the membrane might provide
indication of the structure and the boundaries of the ion-conducting (i.e., pore-forming) region, as well as the
location of charge groups that might be involved in voltage-sensing gating charge movement.

This approach was successfully used in the study of shaker potassium ion inactivation. Following activation
of this channel, the ensuing inactivation was found to be voltage- independent. One can therefore deduce that the
inactivation process must lie outside the membrane; otherwise it would be subjected to the effects of the membrane
electric field. For this reason as well as other reasons, the amino-terminal cytoplasmic domain of the membrane
protein was investigated by constructing deletion mutants whose channel gating behavior could then be examined.
The results demonstrated that inactivation is controlled by 19 amino acids at the amino-terminal cytoplasmic side
of the channel and that these constitute a ball and chain (Hoshi, Zagotta, and Aldrich, 1990). What appears to be
happening is that associated with channel activation is the movement of negative charge into the cytoplasmic
mouth of the channel, which then attracts the positively charged ball; movement of the ball (which exceeds the
channel mouth in size) then results in closure of the channel.

Some hypotheses can be tested by site-directed mutagenesis, by which specific protein segments are deleted
or inserted as just illustrated, or other such manipulations are performed (Krueger, 1989). By examining the altered
properties of the channel expressed in Xenopus oocytes, one can make educated guesses on the function of certain
segments of the protein. Of course, since the changes can have complex effects on the (unknown) tertiary structure,
the conclusions must be considered as tentative.
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4.6.6 Channel structure: imaging methods

Direct imaging of membrane proteins would, indeed, provide the structural information so greatly desired. X-ray
crystallography is used to study macromolecules at atomic resolution, but it can be used only when the molecule is
repeated in a regular lattice. It has generally not been possible to crystallize membrane proteins; however, two-
dimensional arrays of concentrated purified proteins have been assembled into lipid bilayers with reasonably
regular spacing. X-ray diffraction and electron microscopy (EM) have been used in such investigations, and images
with modest resolution have been obtained. One example is the EM examination of the Torpedo neuromuscular
junction acetylcholine receptor (nAChR) (Toyoshima and Unwin, 1988). The molecule was found to be 8 nm in
diameter, with a central well of 2.0 nm. Viewed on face, the protein has a rosette-like appearance with five
subunits. The subunits function like barrel staves in delineating the aqueous channel. Unfortunately, the resolution
of the image is too large to identify the central pore and its shape with any certainty.

It is thought that the central pore is actually nonuniform in diameter and, as described in Figure 4.29, has a
narrow part which acts as a selectivity filter. Since the intramembrane subunits appear to be oriented as barrel-
staves with the pore resulting from a geometrically defined space, this space will be very sensitive to the tilt of the
subunits. A small change in tilt arising from a change in transmembrane potential (i.e., a change in electrostatic
force) could thereby quickly switch the channel from open to closed and vice versa. Such a hypothesis is developed
by (Zampighi and Simon, 1985).

4.6.7 Ionic conductance based on single-channel conductance

The equivalent electric circuit of the single channel is a resistance in series with a battery and switch. (There is, of
course, a parallel capacitance, representing the associated patch of lipid-bilayer dielectric.) The battery represents
the Nernst potential of the ion for which the channel is selectively permeable while the switch reflects the possible
states discussed above (namely open, closed, and inactivated). Referring to Figure 4.29 from which the aqueous
pore dimension of 2.5 nm diameter and 12.0 nm length is suggested, then the ohmic conductance of such a
cylinder, assuming a bulk resistivity of 250 cm, is 105 pS a value that lies in the range of those experimentally
determined. (Since the channel is of atomic dimensions, the model used here is highly simplified and the numerical
result must be viewed as fortuitous. A more detailed consideration of factors that may be involved is found in Hille
(1992). Based on this model one determines the channel current to be ix = yx(Vim - Vk), where vk is the channel
conductivity and Vi the Nernst potential (illustrated here for potassium). Under normal conditions the channel
conductance is considered to be a constant so that the macroscopic variation in ionic conductance arises from
changes in the fraction of open channels (exactly the effect of the gating variables », m, and /4 for the squid axon
ionic conductances).

The statistical behavior of the single channel can be obtained from an examination of the behavior of a large
number of identical and independent channels and their subunits (the single subunit being a sample member of an
ensemble). If N, are the number of closed subunits in the ensemble and &, the number that are open then assuming
first-order rate processes with a the transfer rate coefficient for transitions from a closed to open state while B the
rate from open to closed gives the equation

N
N, = N, (4.34)

from which one obtains the differential equation

dN,
dt

= BN, - o, (4.35)
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Since the total number of subunits, N, must satisfy N = N(¢) + No(¢), where N is a fixed quantity, then the
above equation becomes

aN
d; +lo+ SIN, = ol (4.36)

Dividing Equation 4.36 through by N and recognizing that n = N,/N as the statistical probability that any
single subunit is open, we arrive at

j—j =a—(o+ fin (4.37)

which corresponds exactly to Equation 4.12. This serves to link the Hodgkin-Huxley description of a
macroscopic membranes with the behavior of a single component channel. Specifically the transfer rate
coefficients a and P describe the transition rates from closed to open (and open to closed) states. One can
consider the movement of n-particles, introduced by Hodgkin and Huxley, as another way of describing
in physical terms the aforementioned rates. (Note that z is a continuous variable and hence "threshold" is
not seen in a single channel. Threshold is a feature of macroscopic membranes with, say, potassium,
sodium, and leakage channels and describes the condition where the collective behavior of all channel
types allows a regenerative process to be initiated which constitutes the upstroke of an action pulse.) In
the above the potassium channel probability of being open is, of couse, n*.

While the description above involved the simultaneous behavior of a large number of equivalent
channels, it also describes the statistics associated with the sequential behavior of a single channel (i.e.,
assuming ergodicity). If a membrane voltage step is applied to the aforementioned ensemble of channels,
then the solution to Equation 4.36 is:

Ny=de letBDty @ (4.38)
e+ fi

It describes an exponential change in the number of open subunits and also describes the exponential rise
in probability n for a single subunit. But if there is no change in applied voltage, one would observe only
random opening and closings of a single channel. However, according to the fluctuation-dissipation
theorem (Kubo, 1966), the same time constants affect these fluctuations as affect the macroscopic
changes described in Equation 4.38. Much work has accordingly been directed to the study of membrane
noise as a means of experimentally accessing single-channel statistics (DeFelice, 1981)..
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Synapses, Receptor Cells, and Brain

5.1 INTRODUCTION

The focus of this book is primarily the electric activity of nerve and muscle and the extracellular electric
and magnetic fields that they generate. It is possible to undertake such a study without considering the
functional role of nerve and muscle in physiology. But without some life science background, the reader's
evaluation of electrophysiological signals would necessarily be handicapped. For that reason, we have
included an overview, with appropriate terminology, of relevant topics in physiology. This chapter is
therefore devoted to a survey of the organization of the nervous system and its main components. It is
hoped that the reader will find it helpful for understanding of the physiological function of the excitable
tissues discussed in other chapters, and to know what to look for elsewhere. For further study, we suggest
the following texts: Jewett and Rayner (1984); Kuffler, Nicholls, and Martin (1984); Nunez (1981);
Patton et al. (1989); Schmidt (1981); Shepherd (1988); all of which appear in the list of references.

A discussion of the nervous system might logically begin with sensory cells located at the
periphery of the body. These cells initiate and conduct signals to the brain and provide various sensory
inputs such as vision, hearing, posture, and so on. Providing information on the environment to the body,
these peripheral cells respond to stimuli with action pulses, which convey their information through
encoded signals. These signals are conducted axonally through ascending pathways, across synapses, and
finally to specific sites in the brain. Other neural cells in the brain process the coded signals, and direct
the actions of muscles and other organs in response to the various sensory inputs. The entire circuit is
recognized as a reflex arc, a basic unit in the nervous system. In some cases it is entirely automatic, and in
others it is under voluntary control.

No neurons run directly from the periphery to the brain. Normally the initiated signal is relayed by
several intermediate neural cells. The interconnection between neurons, called the synapse, behaves as a
simple switch but also has a special role in information processing. The junction (synapse) between a
neural cell and the muscle that it innervates, called the neuromuscular junction, has been particularly well
studied and provides much of our quantitative understanding about synapses. Since it is impossible to
discuss the structure of the nervous system without including synapses, we begin our discussion with an
examination of that topic.

5.2 SYNAPSES

5.2.1 Structure and Function of the Synapse

The function of the synapse is to transfer electric activity (information) from one cell to another. The transfer can
be from nerve to nerve (neuro-neuro), or nerve to muscle (neuro-myo). The region between the pre- and
postsynaptic membrane is very narrow, only 30-50 nm. It is called the synaptic cleft (or synaptic gap). Direct
electric communication between pre- and postjunctional cells does not take place; instead, a chemical mediator is
utilized. The sequence of events is as follows:
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An action pulse reaches the terminal endings of the presynaptic cell.

A neurotransmitter is released, which diffuses across the synaptic gap to bind to receptors in specialized
membranes of the postsynaptic cell.

3. The transmitter acts to open channels of one or several ion species, resulting in a change in the
transmembrane potential. If depolarizing, it is an excitatory postsynaptic potential (EPSP); if
hyperpolarizing, an inhibitory postsynaptic potential (IPSP).

N —

Figure 5.1 shows the synapse between a nerve and muscle cell, a neuromuscular junction.

In cardiac muscle the intercellular space between abutting cells is spanned by gap junctions, which
provide a low-resistance path for the local circuit currents and may be regarded as an electric (myo-myo)
synapse. (The gap, however, is not called a synaptic cleft.) This type of junction is discussed in a later
chapter.

The presynaptic nerve fiber endings are generally enlarged to form terminal buttons or synaptic
knobs. Inside these knobs are the vesicles that contain the chemical transmitters. The arrival of the action
pulse opens voltage-gated Ca’" channels that permit an influx of calcium ions. These in turn trigger the
release into the synaptic gap, by exocytosis, of a number of the "prepackaged" vesicles containing the
neurotransmitter.

On average, each neuron divides into perhaps 1000 synaptic endings. On the other hand, a single
spinal motor neuron may have an average of 10,000 synaptic inputs. Based on this data, it is not
surprising that the ratio of synapse to neurons in the human forebrain is estimated to be around 4x10*. In
neuro-neuro synapses, the postjunctional site may be a dendrite or cell body, but the former predominates.

Schwann cell nucleus

Schwann cell
process

Active zones
Synaptic vesicles

=ynaptic cleft
huscle fiber Junctional folds

Fig. 5.1. The neuromuscular (synaptic) junction. Many features of this junction are also seen in
the nerve-nerve synapse. The terminal ending of the prejunctional cell contains many vesicles,
which are packages of the neurotransmitter acetylcholine (ACh). The gap between the pre- and
postjunctional membrane is on the order of 15-30 nm. The transmitter is released by the arrival of
an action impulse in the nerve; it diffuses and binds to receptors on the postjunctional muscle
membrane, bringing about an EPSP and the initiation of a muscle action potential.
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5.2.2 Excitatory and Inhibitory Synapses

In the neuromuscular junction, upon arrival of an action pulse at the motor neuron ending, acetylcholine (ACh) is
released into the cleft. It diffuses across the gap to the muscle membrane where it binds to specialized receptors,
resulting in a simultaneous increase in membrane permeability to both sodium and potassium ions. Because the
relative effect on sodium exceeds that of potassium (described quantitatively later in this section), the membrane
depolarizes and a postsynaptic action potential results. The process is always excitatory. Furthermore, arrival of a
single action potential at the prejunctional site always results in sufficient release of transmitter to produce a
transthreshold depolarization and initiate an action potential in the muscle.

Synaptic inhibition occurs at nerve-nerve (neuro-neuro) junctions when presynaptic activity releases a
transmitter that hyperpolarizes the postsynaptic membrane (i.e., makes its membrane voltage more negative). In
theory, hyperpolarization could result from elevation of either potassium or chloride permeability because the
equilibrium potential of each is more negative than the normal resting potential (which is influenced in the positive
direction by the presence of sodium). In actuality, however, inhibition is due to elevated chloride permeability.

In contrast with the neuromuscular (neuro-myo) junction, a single excitatory input to a neuro-neuro synapse
is completely inadequate to depolarize the postjunctional membrane to threshold. In fact, with perhaps thousands of
both excitatory and inhibitory inputs on the postjunctional cell, a spatial and temporal summation is continually
taking place, and the membrane voltage will fluctuate. When, finally, a threshold of perhaps 10-15 mV is reached,
an action potential results. In this way, an important integrative process takes place at the inputs to each nerve cell.
The reader with computer science experience can appreciate the tremendous possibilities for information
processing that can (and do!) take place, particularly when one considers that there are perhaps 10'* neurons and
10" synapses in the human brain. This is indeed a neural net.

Presynaptic inhibition is another inhibition mechanism. In this case an inhibitory nerve ending (from another
axon known as the presynaptic inhibitor) is synapsed to an excitatory presynaptic terminal. The inhibitory nerve
releases a transmitter that partially depolarizes the presynaptic cell. As a consequence, activation arising in the
presynaptic fiber is diminished, hence the release of transmitter is reduced. As a result, the degree of excitation
produced in the postsynaptic cell is reduced (hence an inhibitory effect).

The falling phase of the EPSP is characterized by a single time constant - that is, the time required for the
response to a single excitatory stimulus to diminish to 1/e of its maximum. This is an important value. If a sequence
of afferent stimuli occurs in a very short time interval, then temporal summation of the EPSPs occurs, yielding a
growing potential. Similarly, if activity occurs at more than one synaptic knob simultaneously (or within the length
of the aforementioned time constant), then spatial summation results. The additive effect on a synapse is nonlinear.
Furthermore, the individual synapses interact in an extremely complicated way (Stevens, 1968). Despite these
complexities, it has been shown experimentally that both spatial and temporal summation generally behave in a
simple linear manner (Granit, Haase, and Rutledge, 1960; Granit and Renkin, 1961).

Synaptic transmission has been compared to an electric information transfer circuit in the following way: In
the nerve axon the information is transferred by means of nerve impulses in "digital" or, more accurately, "pulse-
code modulated" form. In the synapse, information is conducted with the transmitter substance in analog form, to
be converted again in the next neuron into "digital" form. Though this analogy is not correct in all aspects, it
illustrates the character of the neural information chain.

5.2.3 Reflex Arc

The driver of a car receives visual signals via photoreceptors that initiate coded afferent impulses that ascend nerve
fibers and terminate in the visual cortex. Once the brain has processed the information, it sends efferent signals to
the muscles in the foot and hands. Thus the car is slowed down and can make a right turn. But if our hand is
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mistakenly brought to rest on a hot surface, a set of signals to the hand and arm muscles result that are nof initiated
in the higher centers; cognition comes into play only after the fact. We say that a reflex path is involved in both of
these examples. The first is complex and involves higher centers in the central nervous system, whereas the second
describes a simpler reflex at a lower level. In fact, a great deal of reflex activity is taking place at all times of which
we are unaware. For example, input signals are derived from internal sensors, such as blood pressure, or oxygen
saturation in the blood, and so on, leading to an adjustment of heart rate, breathing rate, etc.

The reflex arc, illustrated above, is considered to be the basic unit of integrated neural activity. It consists
essentially of a sensory receptor, an afferent neuron, one or more synapses, an efferent neuron, and a muscle or
other effector. The connection between afferent and efferent pathways is found, generally, in the spinal cord or the
brain. The simplest reflex involves only a single synapse between afferent and efferent neurons (a monosynaptic
reflex); an example is the familiar knee jerk reflex.

Homeostasis refers to the various regulatory processes in the body that maintain a normal state in the face of
disturbances. The autonomic nervous system is organized to accomplish this automatically with regard to many
organs of the body; its activity, like that of the somatic nervous system, is based on the reflex arc. In this case
signals, which arise at visceral receptors, are conveyed via afferent neurons to the central nervous system, where
integration takes place, resulting in efferent signals to visceral effectors (in particular, smooth muscle) to restore or
maintain normal conditions. Integration of signals affecting blood pressure and respiration takes place in the
medulla oblongata; those controlling pupillary response to light are integrated in the midbrain, whereas those
responding to body temperature are integrated in the Aypothalamus - to give only a few examples.

5.2.4 Electric Model of the Synapse

At the neuromuscular junction, Fatt and Katz (1951) showed that acetylcholine significantly increases the
permeability of the cell membrane to small ions, whereas Takeuchi and Takeuchi (1960) demonstrated that chloride
conductance was unaffected (in fact, g¢ = 0). What happens if the membrane becomes equally permeable to
sodium and potassium ions? Such a condition would alter the membrane potential from near the potassium Nernst
potential to a value that approximates the average of the sodium and potassium equilibrium potentials. (This
potential, in turn, is close to zero transmembrane voltage and is entirely adequate to initiate an activation.) If the
postsynaptic region is voltage-clamped, the value that reduces the membrane current to zero during transmitter
release is called the reversal voltage V.. One can show that it equals the average Nernst potential of sodium and
potassium, as mentioned above. In the neuromuscular junction in skeletal muscle, this reversal voltage is about -15
mV.

The electric behavior at a synapse can be estimated by examining an equivalent circuit of the postsynaptic
membrane, such as that shown in Figure 5.2. Two regions are identified: One represents the membrane associated
with receptors sensitive to the transmitter, and the other the normal excitable membrane of the cell. In Figure 5.2
these two regions are represented by discrete elements, but in reality these are distributed along the structure that
constitutes the actual cell. This figure depicts a neuromuscular junction, where the release of acetylcholine results
in the elevation of sodium and potassium conductance in the target region, which is in turn depicted by the closing
of the ACh switch. Upon closure of this switch,

Alyg = AGra(Vin - Vina) (5.1)
Al = AG(Vim - Vi) (5.2)
where Iy, Ik = sodium and potassium ion currents [pA/cm.]
AGy,, = additional sodium and potassium conductances following activation by ACh (i.e., nearly equal
AGg large conductances) [mS/cm ]
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Vina, Vi = the Nernst voltages corresponding to the sodium and potassium concentrations [mV]

7% = membrane voltage [mV]
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Fig. 5.2. (A) Electric model of the postsynaptic cell with excitatory synapse (a neuromuscular
junction is specifically represented). Most of the cell is bounded by normal excitable membrane,
as described on the left. In addition, a specialized postsynaptic region (end-plate) exists that is
sensitive to the chemical transmitter ACh. When the ACh is released, it diffuses to receptor sites
on the postjunctional membrane, resulting in the opening of potassium and sodium gates. This
effect is mimicked in the model through closing of the switch, hence introducing the high
transmembrane potassium and sodium conductance (AGy, and AGk).

(B) The corresponding model with an inhibitory synapse.

If we now introduce and maintain the reversal voltage across the postsynaptic membrane through a
voltage clamp, Equations 5.1 and 5.2 are replaced by:

Alya = AG,(VR - Vina) (5.3)

AIK = AGK(VR - VK) (54)

since the transmembrane voltage V), takes the value Vg, the reversal voltage.

For the conditions described by Equations 5.3 and 5.4, since the total current at the reversal voltage
is zero, it follows that the sodium and potassium ion currents are equal and opposite in sign (i.e., Aly, = -
Alx). Consequently, applying this condition to Equations 5.3 and 5.4 results in the following:

AGp,(Vr - VNa) =- AGK(VR - VK) (5-5)

Collecting terms in Equation 5.5 gives

(AGNa + AGK) VR = AGNaVNa - AGKVK (56)
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and solving for the reversal voltage results in

A,

VN.:: + VK
. _ Al +A0ey _ AGy 5)
R AGy, + AK £Gua |, | '
AGy

From Equation 5.7 it is easy to see that if the introduction of ACh causes an equal increase in the
sodium and potassium conductances - that is, if

M
= Na =1 (5.8)
X
then
Far, +17

as noted previously. For the frog's neuromuscular junction the reversal voltage comes to around -25 mV.
In practice, the reversal voltage is a little closer to zero, which means that ACh increases the sodium
conductance a little more than it does the potassium conductance. It is also clear that the increase of these
sodium and potassium conductances must occur simultaneously. The differences in the mechanisms of
the membrane activation and synaptic voltages are described in Table 5.1.
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Table 5.1. Comparison of the mechanisms of membrane activation with synaptic voltage change for the
post-synaptic neuromuscular junction.

Feature Membrane region Synaptic region

Early effect depolarization arrival of acetylcholine

Changes in membrane
conductance during

specific increase in Gy, simultaneous increase in Gy,
- rising phase and G

specific increase in Gg )
. passive decay
- falling phase

Equilibrium voltage Vna = +50 mV reversal voltage close to 0 mV
of active membrane

Other features regenerative ascent followed no evidence for regenerative
by refractory period action or refractoriness
Pharmacology blocked by TTX, not influenced  blocked by curare, not
by curare influenced by TTX

Source: After Kuffler, Nicholls and Martin, 1984.

Returning to Figure 5.2, and applying Thevenin's theorem, we can simplify the receptor circuit to
consist of a single battery whose emf'is the average of V'n, and Vk (hence Fr), and with a conductivity gr
= gna T gk Its effect on the normal membrane of the postsynaptic cell can be calculated since the total
current at any node is necessarily zero - that is, there are no applied currents. Consequently,

Gr (Vin - V&) + Gi(Vin - VK) + Ga(Vim - Viva) = 0 (5.10)

The chloride path in Figure 5.2 is not included in Equation 5.10, since g¢; = 0, as noted above. Solving
for the postsynaptic potential Vm results in
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_ Uplp +Upl e + 0

(5.11)
p + 5 + Oy,

m

This expression is only approximate since the distributed membrane is represented by a discrete (lumped)
membrane. In addition, if the membrane is brought to or beyond threshold, then the linear circuit
representation of Figure 5.2 becomes invalid. Nevertheless, Equation 5.11 should be a useful measure of
whether the postsynaptic potential is likely to result in excitation of the postsynaptic cell.

5.3 RECEPTOR CELLS

5.3.1 Introduction

To begin the overview of the nervous system, we consider the sensory inputs to the body and how they are
initiated. There are many specialized receptor cells, each characterized by a modality to which it is particularly
sensitive and to which it responds by generating a train of action pulses. We are particularly interested in the
structure and function of these receptor cells and focus on the Pacinian corpuscle as an example.

5.3.2 Various Types of Receptor Cells

One of the most important properties required to maintain the life of the living organism is the ability to react to
external stimuli. Sense organs are specialized for this task. The essential element of these organs is the receptor
cell, which responds to physical and chemical stimuli by sending information to the central nervous system. In
general, a receptor cell may respond to several forms of energy, but each is specialized to respond primarily to one
particular type. For instance, the rods and cones in the eye (photoreceptors) can respond to pressure, but they have
a particularly low threshold to electromagnetic energy in the certain frequency band of electromagnetic radiation,
namely visible light. In fact, they are the only receptor cells with such low thresholds to light stimulus.

There are at least a dozen conscious sense modalities with which we are familiar. In addition, there are other
sensory receptors whose information processing goes on without our awareness. Together these may be classified
as (1) extroreceptors, which sense stimuli arising external to the body; (2) introreceptors, which respond to
physical or chemical qualities within the body; and (3) proprioceptors, which provide information on the body's
position. Examples in each of these categories include the following:

1. Extroreceptors
a. Photoreceptors in the retina for, vision
b. Chemoreceptors for sensing of smell and taste
¢. Mechanoreceptors for sensing sound, in the cochlea, or in the skin, for touch sensation
d. Thermoreceptors (i.e., Krause and Ruffini cells), for sensing cold and heat
2. Introreceptors
Chemoreceptors in the carotid artery and aorta, responding to the partial pressure of oxygen, and in the
breathing center, responding to the partial pressure of carbon dioxide
a. Mechanoreceptors in the labyrinth
b. Osmoreceptors in the hypothalamus, registering the osmotic pressure of the blood
3. Proprioceptors
Muscle spindle, responding to changes in muscle length
a. Golgi tendon organ, measuring muscle tension

The sensory receptor contains membrane regions that respond to one of the various forms of
incident stimuli by a depolarization (or hyperpolarization). In some cases the receptor is actually part of
the afferent neuron but, in others it consists of a separate specialized cell. All receptor cells have a
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common feature: They are transducers - that is, they change energy from one form to another. For
instance, the sense of touch in the skin arises from the conversion of mechanical and/or thermal energy
into the electric energy (ionic currents) of the nerve impulse. In general, the receptor cells do not generate
an activation impulse themselves. Instead, they generate a gradually increasing potential, which triggers
activation of the afferent nerve fiber to which they are connected.

The electric events in receptors may be separated into two distinct components:

1. Development of a receptor voltage, which is the graded response of the receptor to the stimulus. It is the
initial electric event in the receptor.

2. Subsequent buildup of a gemerator voltage, which is the electric phenomenon that triggers impulse
propagation in the axon. It is the final electric event before activation, which, in turn, follows the "all-or-
nothing" law.

These voltage changes are, however, one and the same in a receptor such as the Pacinian corpuscle,
in which there are no specialized receptor cells. But in cases like the retina where specialized receptor
cells (i.e., the rods and cones) do exist, these voltages are separate. In the following, we consider the
Pacinian corpuscle in more detail (Granit, 1955).

Because the neural output is carried in the form of all-or-nothing action pulses, we must look to
another form of signal than one that is amplitude modulated. In fact, the generator or receptor potentials
cause repetitive firing of action pulses on the afferent neuron, and the firing rate (and rate of change) is
reflective of the sensory input. This coded signal can be characteristic of the modality being transduced.

In a process of adaptation, the frequency of action potential firing decreases in time with respect to
a steady stimulus. One can separate the responses into fast and slow rates of adaptation, depending on
how quickly the frequency reduction takes place (i.e., muscle spindle is slow whereas touch is fast).

5.3.3 The Pacinian Corpuscle

The Pacinian corpuscle is a touch receptor which, under the microscope, resembles an onion (see Figure 5.3). It is
0.5-1 mm long and 0.3-0.7 mm thick and consists of several concentric layers. The center of the corpuscle includes
the core, where the unmyelinated terminal part of the afferent neuron is located. The first node of Ranvier is also
located inside the core. Several mitochondria exist in the corpuscle, indicative of high energy production.

Outer layer

Core Nerve ending

Fig. 5.3. The Pacinian corpuscle consists of a myelinated sensory neuron whose terminal portion
is unmyelinated. The unmyelinated nerve ending and the first node lie within a connective tissue
capsule, as shown.

175 forras: BioLabor Biofizikai és Laboratoriumi Szolg. Kft. www.biolabor.hu



Werner R. Loewenstein (1959) stimulated the corpuscle with a piezoelectric crystal and measured
the generator voltage (from the unmyelinated terminal axon) and the action potential (from the nodes of
Ranvier) with an external electrode. He peeled off the layers of the corpuscle, and even after the last layer
was removed, the corpuscle generated signals similar to those observed with the capsule intact (see
recordings shown in Figure 5.4).

A C

abcd

0
/

[ S——

Fig. 5.4. Loewenstein's experiments with the Pacinian corpuscle.

(A) The normal response of the generator voltage for increasing applied force (a)-(e).

(B) The layers of the corpuscle have been removed, leaving the nerve terminal intact. The
response to application of mechanical force is unchanged from A.

(C) Partial destruction of the core sheath does not change the response from A or B.

(D) Blocking the first node of Ranvier eliminates the initiation of the activation process but
does not interfere with the formation of the generator voltage.

(E) Degeneration of the nerve ending prevents the creation of the generator voltage.

The generator voltage has properties similar to these of the excitatory postsynaptic voltage. (The
generator voltage is a graded response whereby a weak stimulus generates a low generator voltage
whereas a strong stimulus generates a large generator voltage.) Even partial destruction of the corpuscle
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did not prevent it from producing a generator voltage. But when Loewenstein destroyed the nerve ending
itself, a generator voltage could no longer be elicited. This observation formed the basis for supposing
that the transducer itself was located in the nerve ending. The generator voltage does not propagate on the
nerve fiber (in fact, the nerve ending is electrically inexcitable) but, rather, triggers the activation process
in the first node of Ranvier by electrotonic (passive) conduction. If the first node is blocked, no activation
is initiated in the nerve fiber.

The ionic flow mechanism underlying the generator (receptor) voltage is the same as that for the
excitatory postsynaptic voltage. Thus deformation of the Pacinian corpuscle increases both the sodium
and potassium conductances such that their ratio (Pn./Px) increases and depolarization of the membrane
potential results. As a result, the following behavior is observed:

1. Small (electrotonic) currents flow from the depolarized unmyelinated region of the axon to the nodes of
Ranvier.

2. On the unmyelinated membrane, local graded generator voltages are produced independently at separate

sites.

The aforementioned separate receptor voltages are summed in the first node of Ranvier.

4. The summed receptor voltages, which exceed threshold at the first node of Ranvier, generate an action
impulse. This is evidence of spatial summation, and is similar to the same phenomenon observed in the
excitatory postsynaptic potential.

98]

5.4 ANATOMY AND PHYSIOLOGY OF THE BRAIN

5.4.1 Introduction

Action pulses generated at the distal end of sensory neurons propagate first to the cell body and then onward,
conveyed by long axonal pathways. These ascend the spinal cord (dorsal root) until they reach the lower part of the
central nervous system. Here the signals are relayed to other neurons, which in turn relay them onward. Three or
four such relays take place before the signals reach particular loci in the cerebral cortex. Signal processing takes
place at all levels, resulting in the state of awareness and conscious recognition of the various signals that
characterize human physiology. The important integrative activity of the brain has been the subject of intense
study, but its complexity has slowed the rate of progress. In this section a brief description is given of both the
anatomy and the physiology of the brain.

5.4.2 Brain Anatomy

The brain consists of 10'°-10'" neurons that are very closely interconnected via axons and dendrites. The neurons
themselves are vastly outnumbered by glial cells. One neuron may receive stimuli through synapses from as many
as 10° to 10° other neurons (Nunez, 1981). Embryologically the brain is formed when the front end of the central
neural system has folded. The brain consists of five main parts, as described in Figure 5.5:

1. The cerebrum, including the two cerebral hemispheres
2. The interbrain (diencephalon)

3. The midbrain

4. The pons Varolii and cerebellum

5. The medulla oblongata
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Fig. 5.5. The anatomy of the brain.

The entire human brain weighs about 1500 g (Williams and Warwick, 1989). In the brain the
cerebrum is the largest part. The surface of the cerebrum is strongly folded. These folds are divided into
two hemispheres which are separated by a deep fissure and connected by the corpus callosum. Existing
within the brain are three ventricles containing cerebrospinal fluid. The hemispheres are divided into the
following lobes: lobus frontalis, lobus parietalis, lobus occipitalis, and lobus temporalis. The surface area
of the cerebrum is about 1600 cm_, and its thickness is 3 mm. Six layers, or laminae, each consisting of
different neuronal types and populations, can be observed in this surface layer. The higher cerebral
functions, accurate sensations, and the voluntary motor control of muscles are located in this region.

The interbrain or diencephalon is surrounded by the cerebrum and is located around the third
ventricle. It includes the thalamus, which is a bridge connecting the sensory paths. The hypothalamus,
which is located in the lower part of the interbrain, is important for the regulation of autonomic
(involuntary) functions. Together with the hypophysis, it regulates hormonal secretions. The midbrain is a
small part of the brain. The pons Varolii is an interconnection of neural tracts; the cerebellum controls
fine movement. The medulla oblongata resembles the spinal cord to which it is immediately connected.
Many reflex centers, such as the vasomotor center and the breathing center, are located in the medulla
oblongata.

In the cerebral cortex one may locate many different areas of specialized brain function (Penfield
and Rasmussen, 1950; Kiloh, McComas, and Osselton, 1981). The higher brain functions occur in the
frontal lobe, the visual center is located in the occipital lobe, and the sensory area and motor area are
located on both sides of the central fissure. There are specific areas in the sensory and motor cortex whose
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elements correspond to certain parts of the body. The size of each such area is proportional to the required
accuracy of sensory or motor control. These regions are described in Figure 5.6. Typically, the sensory
areas represented by the lips and the hands are large, and the areas represented by the midbody and eyes
are small. The visual center is located in a different part of the brain. The motor area, the area represented
by the hands and the speaking organs, is large.
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Fig. 5.6. The division of sensory (left) and motor (right) functions in the cerebral cortex. (From Penfield
and Rasmussen, 1950.)

5.4.3 Brain Function

Most of the information from the sensory organs is communicated through the spinal cord to the brain. There are
special tracts in both spinal cord and brain for various modalities. For example, touch receptors in the trunk synapse
with interneurons in the dorsal horn of the spinal cord. These interneurons (sometimes referred to as second sensory
neurons) then usually cross to the other side of the spinal cord and ascend the white matter of the cord to the brain
in the lateral spinothalamic tract. In the brain they synapse again with a second group of interneurons (or third
sensory neuron) in the thalamus. The third sensory neurons connect to higher centers in the cerebral cortex.

In the area of vision, afferent fibers from the photoreceptors carry signals to the brain stem through the optic
nerve and optic tract to synapse in the lateral geniculate body (a part of the thalamus). From here axons pass to the
occipital lobe of the cerebral cortex. In addition, branches of the axons of the optic tract synapse with neurons in
the zone between thalamus and midbrain which is the pretectal nucleus and superior colliculus. These, in turn,
synapse with preganglionic parasympathetic neurons whose axons follow the oculomotor nerve to the ciliary
ganglion (located just behind the eyeball). The reflex loop is closed by postganglionic fibers which pass along
ciliary nerves to the iris muscles (controlling pupil aperture) and to muscles controlling the lens curvature
(adjusting its refractive or focusing qualities). Other reflexes concerned with head and/or eye movements may also
be initiated.

Motor signals to muscles of the trunk and periphery from higher motor centers of the cerebral cortex first
travel along upper motor neurons to the medulla oblongata. From here most of the axons of the upper motor
neurons cross to the other side of the central nervous system and descend the spinal cord in the lateral corticospinal
tract; the remainder travel down the cord in the anterior corticospinal tract. The upper motor neurons eventually
synapse with lower motor neurons in the ventral horn of the spinal cord; the lower motor neurons complete the path
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to the target muscles. Most reflex motor movements involve complex neural integration and coordinate signals to
the muscles involved in order to achieve a smooth performance.

Effective integration of sensory information requires that this information be collected at a single center. In
the cerebral cortex, one can indeed locate specific areas identified with specific sensory inputs (Penfield and
Rasmussen, 1950; Kiloh, McComas, and Osselton, 1981). While the afferent signals convey information regarding
stimulus strength, recognition of the modality depends on pinpointing the anatomical classification of the afferent
pathways. (This can be demonstrated by interchanging the afferent fibers from, say, auditory and tactile receptors,
in which case sound inputs are perceived as of tactile origin and vice versa.)

The higher brain functions take place in the frontal lobe, the visual center is in the occipital lobe, the sensory
area and motor area are located on both sides of the central fissure. As described above, there is an area in the
sensory cortex whose elements correspond to each part of the body. In a similar way, a part of the brain contains
centers for generating command (efferent) signals for control of the body's musculature. Here, too, one finds
projections from specific cortical areas to specific parts of the body.

5.5 CRANIAL NERVES

In the central nervous system there are 12 cranial nerves. They leave directly from the cranium rather than the
spinal cord. They are listed in Table 5.2 along with their functions. The following cranial nerves have special
importance: the olfactory (1) and optic (II) nerves, which carry sensory information from the nose and eye; and the
auditory-vestibular (VIII) nerve, which carries information from the ear and the balance organ. Sensory
information from the skin of the face and head is carried by the trigeminal (V) nerve. Eye movements are
controlled by three cranial nerves (III, IV, and VI). The vagus nerve (X) controls heart function and internal organs
as well as blood vessels.
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Table 5.2. The cranial nerves

Number Name Sensory/ Functions Origin or terminus
Motor in the brain
I olfactory s smell cerebral hemispheres

(ventral part)

Il optic s vision thalamus
1] oculomotor m eye movement midbrain
\Y, trochlear m eye movement midbrain
\Y trigeminal m masticatory movements midbrain and pons
s sensitivity of face and tongue medulla
W abducens m eye movements medulla
Vil facial m facial movement medulla
VI auditory s hearing medulla
vestibular s balance
IX glossopharyngeal s,m tongue and pharynx medulla
X vagus s,m heart, blood vessels, viscera medulla
Xl spinal accessory m neck muscles and viscera medulla
Xl hypoglossal m medulla
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The Heart

6.1 ANATOMY AND PHYSIOLOGY OF THE HEART

6.1.1 Location of the Heart

The heart is located in the chest between the lungs behind the sternum and above the diaphragm. It is surrounded
by the pericardium. Its size is about that of a fist, and its weight is about 250-300 g. Its center is located about 1.5
cm to the left of the midsagittal plane. Located above the heart are the great vessels: the superior and inferior vena
cava, the pulmonary artery and vein, as well as the aorta. The aortic arch lies behind the heart. The esophagus and
the spine lie further behind the heart. An overall view is given in Figure 6.1 (Williams and Warwick, 1989).

182 forrds: BioLabor Biofizikai és Laboratériumi Szolg. Kft. www.biolabor.hu



Sternum /

-J

Heart:

N, Leftventric_le
Diaphragm ﬁ\ J Right ventricle

A

Fig. 6.1. Location of the heart in the thorax. It is bounded by the diaphragm, lungs, esophagus,
descending aorta, and sternum.
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6.1.2 Anatomy of the Heart

The walls of the heart are composed of cardiac muscle, called myocardium. 1t also has striations similar to skeletal
muscle. It consists of four compartments: the right and left atria and ventricles. The heart is oriented so that the
anterior aspect is the right ventricle while the posterior aspect shows the left atrium (see Figure 6.2). The atria form
one unit and the ventricles another. This has special importance to the electric function of the heart, which will be
discussed later. The left ventricular free wall and the sepfum are much thicker than the right ventricular wall. This
is logical since the left ventricle pumps blood to the systemic circulation, where the pressure is considerably higher
than for the pulmonary circulation, which arises from right ventricular outflow.

The cardiac muscle fibers are oriented spirally (see Figure 6.3) and are divided into four groups: Two groups
of fibers wind around the outside of both ventricles. Beneath these fibers a third group winds around both
ventricles. Beneath these fibers a fourth group winds only around the left ventricle. The fact that cardiac muscle
cells are oriented more tangentially than radially, and that the resistivity of the muscle is lower in the direction of
the fiber has importance in electrocardiography and magnetocardiography.

The heart has four valves. Between the right atrium and ventricle lies the tricuspid valve, and between the
left atrium and ventricle is the mitral valve. The pulmonary valve lies between the right ventricle and the
pulmonary artery, while the aortic valve lies in the outflow tract of the left ventricle (controlling flow to the aorta).
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The blood returns from the systemic circulation to the right atrium and from there goes through the tricuspid valve
to the right ventricle. It is ejected from the right ventricle through the pulmonary valve to the lungs. Oxygenated
blood returns from the lungs to the left atrium, and from there through the mitral valve to the left ventricle. Finally
blood is pumped through the aortic valve to the aorta and the systemic circulation..
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Fig. 6.2. The anatomy of the heart and associated vessels.
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Fig. 6.3. Orientation of cardiac muscle fibers.

6.2 ELECTRIC ACTIVATION OF THE HEART

6.2.1 Cardiac Muscle Cell

In the heart muscle cell, or myocyte, electric activation takes place by means of the same mechanism as in the nerve
cell - that is, from the inflow of sodium ions across the cell membrane. The amplitude of the action potential is also
similar, being about 100 mV for both nerve and muscle. The duration of the cardiac muscle impulse is, however,
two orders of magnitude longer than that in either nerve cell or skeletal muscle. A plateau phase follows cardiac
depolarization, and thereafter repolarization takes place. As in the nerve cell, repolarization is a consequence of the
outflow of potassium ions. The duration of the action impulse is about 300 ms, as shown in Figure 6.4 (Netter,
1971).

Associated with the electric activation of cardiac muscle cell is its mechanical contraction, which occurs a
little later. For the sake of comparison, Figure 6.5 illustrates the electric activity and mechanical contraction of frog
sartorius muscle, frog cardiac muscle, and smooth muscle from the rat uterus (Ruch and Patton, 1982).

An important distinction between cardiac muscle tissue and skeletal muscle is that in cardiac muscle,
activation can propagate from one cell to another in any direction. As a result, the activation wavefronts are of
rather complex shape.
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The only exception is the boundary between the atria and ventricles, which the activation wave normally cannot
cross except along a special conduction system, since a nonconducting barrier of fibrous tissue is present..
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Fig. 6.4. Electrophysiology of the cardiac muscle cell.
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Fig. 6.5. Electric and mechanical activity in

(A) frog sartorius muscle cell,

(B) frog cardiac muscle cell, and

(C) rat uterus wall smooth muscle cell.
In each section the upper curve shows the transmembrane voltage behavior, whereas the lower one
describes the mechanical contraction associated with it.
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6.2.2 The Conduction System of the Heart

Located in the right atrium at the superior vena cava is the sinus node (sinoatrial or SA node) which consists of
specialized muscle cells. The sinoatrial node in humans is in the shape of a crescent and is about 15 mm long and 5
mm wide (see Figure 6.6). The SA nodal cells are self-excitatory, pacemaker cells. They generate an action
potential at the rate of about 70 per minute. From the sinus node, activation propagates throughout the atria, but
cannot propagate directly across the boundary between atria and ventricles, as noted above.

The atrioventricular node (AV node) is located at the boundary between the atria and ventricles; it has an
intrinsic frequency of about 50 pulses/min. However, if the AV node is triggered with a higher pulse frequency, it
follows this higher frequency. In a normal heart, the AV node provides the only conducting path from the atria to
the ventricles. Thus, under normal conditions, the latter can be excited only by pulses that propagate through it.

Propagation from the AV node to the ventricles is provided by a specialized conduction system. Proximally,
this system is composed of a common bundle, called the bundle of His (named after German physician Wilhelm
His, Jr., 1863-1934). More distally, it separates into two bundle branches propagating along each side of the
septum, constituting the right and left bundle branches. (The left bundle subsequently divides into an anterior and
posterior branch.) Even more distally the bundles ramify into Purkinje fibers (named after Jan Evangelista Purkinje
(Czech; 1787-1869)) that diverge to the inner sides of the ventricular walls. Propagation along the conduction
system takes place at a relatively high speed once it is within the ventricular region, but prior to this (through the
AV node) the velocity is extremely slow.

From the inner side of the ventricular wall, the many activation sites cause the formation of a wavefront
which propagates through the ventricular mass toward the outer wall. This process results from cell-to-cell
activation. After each ventricular muscle region has depolarized, repolarization occurs. Repolarization is not a
propagating phenomenon, and because the duration of the action impulse is much shorter at the epicardium (the
outer side of the cardiac muscle) than at the endocardium (the inner side of the cardiac muscle), the termination of
activity appears as if it were propagating from epicardium toward the endocardium.
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Fig. 6.6. The conduction system of the heart.

Because the intrinsic rate of the sinus node is the greatest, it sets the activation frequency of the whole
heart. If the connection from the atria to the AV node fails, the AV node adopts its intrinsic frequency. If
the conduction system fails at the bundle of His, the ventricles will beat at the rate determined by their
own region that has the highest intrinsic frequency. The electric events in the heart are summarized in

Table 6.1. The waveforms of action impulse observed in different specialized cardiac tissue are shown in
Figure 6.7.
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Table 6.1. Electric events in the heart

Location in ) ECG- Conduction Intrinsic
Event Time [ms] . . .
the heart terminology velocity [m/s] frequency [1/min]
SA node impulse generated 0 0.05 70-80
atrium, Right depolarization *) 5 P 0.8-1.0
Left depolarization 85 P 0.8-1.0
AV node arrival of impulse 50 P-Q 0.02-0.05
departure of impulse 125 interval
bundle of His activated 130 1.0-1.5
bundle branches 4ctivated 145 1.0-1.5
Purkinje fibers  _ tivated 150 3.0-3.5
endocardium
Septum . depolarization 175 0.3 (axial) 20-40
Left ventricle L -
depolarization 190 0.8
epicardium depolarization 275 QRS (transverse)
Left ventricle depolarization 250
Right ventricle P
epicardium
L?ft Ventrlqle repolarization 400
Right ventricle S
repolarization
0.5
endocardium
: T
Left ventricle repolarization 600

*) Atrial repolarization occurs during the ventricular depolarization; therefore, it is not normally seen in the

electrocardiogram.
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Fig. 6.7. Electrophysiology of the heart.The different waveforms for each of the specialized cells
found in the heart are shown. The latency shown approximates that normally found in the healthy
heart.

A classical study of the propagation of excitation in human heart was made by Durrer and his co-workers
(Durrer et al., 1970). They isolated the heart from a subject who had died of various cerebral conditions
and who had no previous history of cardiac diseases. The heart was removed within 30 min post mortem
and was perfused. As many as 870 electrodes were placed into the cardiac muscle; the electric activity
was then recorded by a tape recorder and played back at a lower speed by the ECG writer; thus the
effective paper speed was 960 mm/s, giving a time resolution better than 1 ms.

Figure 6.8 is redrawn from these experimental data. The ventricles are shown with the anterior wall of the
left and partly that of the right ventricle opened. The isochronic surfaces show clearly that ventricular
activation starts from the inner wall of the left ventricle and proceeds radially toward the epicardium. In
the terminal part of ventricular activation, the excitation wavefront proceeds more tangentially. This
phenomenon and its effects on electrocardiogram and magnetocardiogram signals are discussed in greater
detail later.
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Fig. 6.8. Isochronic surfaces of the ventricular activation. (From Durrer et al., 1970.)

6.3 THE GENESIS OF THE ELECTROCARDIOGRAM

6.3.1 Activation Currents in Cardiac Tissue

Section 6.2.1 discussed cardiac electric events on an intracellular level. Such electric signals (as illustrated in Figs.
6.4, 6.5, and 6.7) may be recorded with a microelectrode, which is inserted inside a cardiac muscle cell. However,
the electrocardiogram (ECQ) is a recording of the electric potential, generated by the electric activity of the heart,
on the surface of the thorax. The ECG thus represents the extracellular electric behavior of the cardiac muscle
tissue. In this section we explain the genesis of the ECG signal via a highly idealized model.

Figure 6.9A and B show a segment of cardiac tissue through which propagating depolarization (A) and
repolarization (B) wavefront planes are passing. In this illustration the wavefronts move from right to left, which
means that the time axis points to the right. There are two important properties of cardiac tissue that we shall make
use of to analyze the potential and current distribution associated with these propagating waves. First, cells are
interconnected by low-resistance pathways (gap junctions), as a result of which currents flowing in the intracellular
space of one cell pass freely into the following cell. Second, the space between cells is very restrictive (accounting
for less than 25% of the total volume). As a result, both intracellular and extracellular currents are confined to the
direction parallel to the propagation of the plane wavefront.

The aforementioned conditions are exactly those for which the linear core conductor model, introduced in
Section 3.4, fully applies; that is, both intracellular and extracellular currents flow in a linear path. In particular
when using the condition /; + I, = 0 and Equations 3.41

5D, 5D
I

(3.41)
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one obtains

(slank od
a—x! = fl:"ri axo = —fDIF"D (61)

Integrating from x = — 0, to x = x gives

O =n[ldx @, =-r|Ldr (6.2)

Subtracting the second of Equations 6.2 from the first and applying V, = @; - @,, the definition of the
transmembrane potential, we obtain:

Vi = (7 +roj_[focix (6.3)

From Equation 6.3 we obtain the following important relationships valid for linear core conductor
conditions, namely that

D =—""0 6.4
; —— m (6.4)
and
P
T =——W 6.5
o i m (6.5)

These equations describe "voltage divider" conditions and were first pointed out by Hodgkin and Rushton
(1946). Note that they depend on the validity of Equation 3.36 which, in turn, requires that there be no
external (polarizing) currents in the region under consideration.
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Fig. 6.9. The genesis of the electrocardiogram.

6.3.2 Depolarization Wave

We may now apply Equation 6.5 to the propagating wave under investigation. The variation in the value of V;,(x) is

easy to infer from Figure 6.9C (dashed line) since in the activated region it is at the plateau voltage, generally

around +40 mV, whereas in the resting region it is around -80 mV. The transition region is usually very narrow

(about 1 mm, corresponding to a depolarization of about 1 ms and a velocity < 1 m/s), as the figure suggests.

Application of Equation 6.4 results in the extracellular potential (®,) behavior shown in Figure 6.9C (solid line).
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In Figure 6.9, the ratio r,/(r, + ;) = 0.5 has been chosen on the basis of experimental evidence for propagation
along the cardiac fiber axis (Kléber and Riegger, 1986).

The transmembrane current /,, can be evaluated from V,(x) in Figure 6.9C by applying the general cable
equation (Equation 3.45):

To=-—"—Vy (3.45)

2
o1 9Vm (6.6)
,?‘i. +'r.:| 3}.’2

This current is confined to the depolarization zone. As shown in Figure 6.9A, just to the right of the
centerline it is inward (thick arrows), and just to the left it is outward (thin arrows). The inward portion
reflects the sodium influx, triggered by the very large and rapid rise in sodium permeability. The current
outflow is the "local circuit" current which initially depolarizes the resting tissue, and which is advancing
to the left (i.e., in the direction of propagation). The course of the transmembrane current is approximated
in Figure 6.9E using Equation 6.6.

An examination of the extracellular potential ®, shows it to be uniform except for a rapid change
across the wavefront. Such a change from plus to minus is what one would expect at a double layer
source where the dipole direction is from right to left (from minus to plus as explained in Section 11.2).
So we conclude that for the depolarization (activation) of cardiac tissue a double layer appears at the
wavefront with the dipole orientation in the direction of propagation. One can also approximate the
source as proportional to the transmembrane current - estimated here by a lumped negative point source
(on the right) and a lumped positive point source (on the left) which taken together constitute a dipole in
the direction of propagation (to the left).

Finally, a double layer, whose positive side is pointing to the recording electrode (to the left),
produces a positive (ECG) signal (Figure 6.9G).

6.3.3 Repolarization Wave

The nature of the repolarization wave is in principle very different from that of the depolarization wave. Unlike
depolarization, the repolarization is not a propagating phenomenon. If we examine the location of repolarizing cells
at consecutive time instances, we can, however, approximate the repolarization with a proceeding wave
phenomenon.

As stated previously, when a cell depolarizes, another cell close to it then depolarizes and produces an
electric field which triggers the depolarization phenomenon. In this way, the depolarization proceeds as a
propagating wave within cardiac tissue.

Repolarization in a cell occurs because the action pulse has only a certain duration; thus the cell repolarizes
at a certain instant of time after its depolarization, not because of the repolarization of an adjoining cell. If the
action pulses of all cells are of equal duration, the repolarization would of course accurately follow the same
sequence as depolarization. In reality, however, this is not the case in ventricular muscle. The action pulses of the
epicardial cells (on the outer surface) are of shorter duration than those of the endocardial cells (on the inner
surface). Therefore, the "isochrones" of repolarizing cells proceed from the epicardium to the endocardium, giving
the illusion that the repolarization proceeds as a wave from epicardium to endocardium.
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If the cardiac action pulse were always of the same shape, then following propagation of depolarization from
right to left, the recovery (repolarization) would also proceed from right to left. This case is depicted in the highly
idealized Figure 6.9B, where the cells that were activated earliest must necessarily recover first. The recovery of
cardiac cells is relatively slow, requiring approximately 100 ms (compare this with the time required to complete
activation - roughly 1 ms). For this reason, in Figure 6.9B we have depicted the recovery interval as much wider
than the activation interval.

The polarity of V,(x) decreases from its plateau value of +40 mV on the left to the resting value of -80 mV
on the right (Figure 6.9D (dashed line)). Again, Equation 6.5 may be applied, in this case showing that the
extracellular potential @, (solid line) increases from minus to plus. In this case the double layer source is directed
from left to right. And, it is spread out over a wide region of the heart muscle. (In fact, if activation occupies 1 mm,
then recovery occupies 100 mm, a relationship that could only be suggested in Figure 6.9B, since in fact, it
encompasses the entire heart!)

The transmembrane current /,,, can be again evaluated from V,(x) in Figure 6.9D by applying Equation 6.6.
As shown in Figure 6.9B, to the right of the centerline it is outward (thick arrows) and just to the left it is inward
(thin arrows). The outward portion reflects the potassium efflux due to the rapid rise of potassium permeability.
The current inflow is again the "local circuit" current. The course of the transmembrane current during
repolarization is approximated in Figure 6.9F.

Thus, during repolarization, a double layer is formed that is similar to that observed during depolarization.
The double layer in repolarization, however, has a polarity opposite to that in depolarization, and thus its negative
side points toward the recording electrode; as a result, a negative (ECG) signal is recorded (Figure 6.9H).

In real heart muscle, since the action potential duration at the epicardium is actually shorter than at the
endocardium, the recovery phase appears to move from epicardium to endocardium, that is, just the opposite to
activation (and opposite the direction in the example above). As a consequence the recovery dipole is in the same
direction as the activation dipole (i.e. reversed from that shown in Figure 6.9B). Since the recovery and activation
dipoles are thus in the same direction one can explain the common observation that the normal activation and
recovery ECG signal has the same polarity..
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Bioelectric Sources and Conductors
and Their Modeling

A practical way to investigate the function of living organisms is to construct a simple model that follows
their operation with reasonable accuracy. Thus, to investigate the function of bioelectric sources and
conductors, we need to construct models that accurately describe the bioelectric behavior of the tissue
they represent and that can be mathematically analyzed.

Chapter 7 of Part II first characterizes the nature of bioelectric sources and conductors. It points out
that in contrast to electronic circuits, in which the electric properties of the components are concentrated,
the biological organs are distributed volume sources and volume conductors. The standard equations
describing the electric field of a volume source in a volume conductor are derived. The electric properties
of the human body as a volume conductor are then characterized. This is followed by an introductory
discussion of modeling of the biological volume sources and volume conductors. The fundamental
concepts of forward and inverse problems are then defined and their solvability is discussed.

Chapter 8 provides a detailed theoretical discussion of various source-field models and their
mathematical basis. Chapter 9 follows with a discussion of a model of the biological tissue as a volume
conductor. This is called the bidomain model.

Chapter 10 further explores the modeling of biological sources in regard to electronic neuron
models. The bioelectric behavior of neural cells and the electric concepts used in this discussion are
further exemplified with electronic circuits. The discussion on electronic neuron models may also serve as
a basic introduction to neurocomputers, which are a fascinating example of applying biological principles
to technological systems. That topic is, however, far beyond the scope of this book.
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Volume Source and Volume Conductor

7.1 CONCEPTS OF VOLUME SOURCE AND VOLUME CONDUCTOR

The field of science and engineering most relevant to electrophysiology and bioelectromagnetism is electrical
engineering. However, the electrical engineering student will quickly note some important distinctions in emphasis
between these disciplines. Much of electrical engineering deals with networks made up of batteries, resistances,
capacitances, and inductors. Each of these elements, while actually comprising a physical object, is considered to
be discrete. Electric circuits and electric networks have been extensively studied to elucidate the properties of their
structures.

In electrophysiology and bioelectromagnetism there are no inductors, while resistances, capacitances, and
batteries are not discrete but distributed. That is, the conducting medium extends continuously; it is three-
dimensional and referred to as a volume conductor. Although the capacitance is localized to cellular membranes,
since normally our interest is in multicellular preparations (e.g., brain tissue or cardiac muscle) which extend
continuously throughout a three-dimensional region, the capacitance must also be deemed to be distributed. In fact,
this is true as well for the "batteries," which are also continuously distributed throughout these same membranes.

Although the classical studies in electricity and magnetism are relevant, it is the area of electromagnetic
fields that is the most pertinent. Such application to volume conductors is discussed later in detail in Chapter 11,
where it is shown that they form an independent and logical discipline. Wherever possible, results from the simple
sources discussed in the earlier chapters will be applied under more realistic conditions.

A major object of this chapter is to introduce the bioelectric sources and the electric fields arising from the
sources. Another important task is to discuss the concept of modeling. It is exemplified by modeling the bioelectric
volume sources, like those within the entire heart, and volume conductors, like the entire human body. This chapter
provides also a preliminary discussion of the fundamental problems concerning the bioelectric or biomagnetic
fields arising from the sources, called the solutions to the forward problem, and the general preconditions for the
determination of the sources giving a description of the field, called the solutions to the inverse problem. The
discussion on bioelectric sources and the fields that they produce is continued on a theoretical basis in Chapter 8.

7.2 BIOELECTRIC SOURCE AND ITS ELECTRIC FIELD

7.2.1 Definition of the Preconditions

The discussions in each section that follows are valid under a certain set of conditions - that is, for certain types of
electric sources within certain types of volume conductors. Therefore, some limiting assumptions, or preconditions,
are given first. One should note that when the preconditions are more stringent than the actual conditions the
discussion will necessarily be valid. For instance, if the preconditions indicate the discussion is valid in an infinite
homogeneous volume conductor, then it is not valid in a finite inhomogeneous volume conductor. On the other
hand, if the preconditions indicate the discussion is valid in a finite inhomogeneous volume conductor, then it is
also valid in a finite homogeneous volume conductor because the latter is a special case of the former.

It should be noted that all volume conductors are assumed to be linear (consistent with all experimental
evidence). If the volume conductor is presumed to be homogeneous, it is assumed to be isotropic as well. The
various types of sources and conductors are characterized later in this chapter.
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7.2.2 Volume Source in a Homogeneous Volume Conductor

PRECONDITIONS:
SOURCE: Volume source
CONDUCTOR: Infinite, homogeneous

Let us introduce the concept of the impressed current density J'(x,y,zf). This is a nonconservative
current, that arises from the bioelectric activity of nerve and muscle cells due to the conversion of energy
from chemical to electric form. The individual elements of this bioelectric source behave as electric
current dipoles. Hence the impressed current density equals the volume dipole moment density of the
source. Note that J' is zero everywhere outside the region of active cells (Plonsey, 1969). (Note also that
bioelectric sources were formerly modeled by dipoles or double layers formed by the component electric
charges. Today we think of the current source as the basic element.)

If the volume conductor is infinite and homogeneous and the conductivity is o, the primary sources

J' establish an electric field Zand a conduction current 6E. As a result, the total current density
(Geselowitz, 1967) is given by:

T-T 4o 7.1
The quantity 6& is often referred to as the return current. This current is necessary to avoid buildup of
charges due to the source current.

Because the electric field Zis quasistatic (see Section 7.2.4), it can be expressed at each instant of
time as the negative gradient of a scalar potential @, and Equation 7.1 may be rewritten

JT=T -a¥d 7.2)

Since the tissue capacitance is negligible (quasistatic conditions), charges redistribute themselves in
a negligibly short time in response to any source change. Since the divergence of Jevaluates the rate of
change of the charge density with respect to time, and since the charge density must be zero, the
divergence of Jis necessarily zero. (We refer to the total current Jas being solenoidal, or forming closed
lines of current flow.) Therefore, Equation 7.1 reduces to Poisson's equation:

VT = VagW &+ VaT = V1D (7.3)
Equation 7.3 is a partial differential equation satisfied by o® in which ¥=J" is the source function (or
forcing function).

The solution of Equation 7.3 for the scalar function c® for a region that is uniform and infinite in
extent (Stratton, 1941) is:

dmr o = —j( ]‘F T'dv (7.4)

199 forrds: BioLabor Biofizikai és Laboratériumi Szolg. Kft. www.biolabor.hu



Since a source element -¥+7 'dv in Equation 7.4 behaves like a point source, in that it sets up a field, that
varies as 1/r (as will be explained in more detail later in Equation 8.35), the expression -%=.7" is defined as
a flow source density (Ir). Because we seek the solution for field points outside the region occupied by the
volume source, Equation 7.4 may be transformed (Stratton, 1941) to:

dmad = .[ji -V (%)d’v (7.5)

v

This equation represents the distribution of potential ®F due to the bioelectric source J ' within an infinite,
homogeneous volume conductor having conductivity c. Here Edv behaves like a dipole element (with a
field that varies as its dot product with ¥ (1/r), and hence J' can be interpreted as a volume dipole
density). B

In this section we started with a formal definition of J' as an impressed current density (a
nonconservative vector field) and developed its role as a source function of potential fields. These are
expressed by Equations 7.4 and 7.5. But identical expressions will be obtained in Chapter 8 (namely
Equations 8.34 and 8.32) based on an interpretation of J' as a dipole moment per unit volume. This
underscores the dual role played by the distribution /', and provides alternative ways in which it can be
evaluated from actual experiments. (One such approach will be illustrated in Chapter 8.) These alternate
interpretations are, in fact, illustrated by Equations 7.4 and 7.5.

7.2.3 Volume Source in an Inhomogeneous Volume Conductor

PRECONDITIONS:
SOURCE: Volume source
CONDUCTOR: Inhomogeneous

In Section 7.2.2 it was assumed that the medium is uniform (i.e., infinite and homogeneous). Such an
assumption allowed the use of simple expressions that are valid only for uniform homogeneous media of
infinite extent. However, even an in vitro preparation that is reasonably homogeneous is nevertheless
bounded by air, and hence globally inhomogeneous. One can take such inhomogeneities into account by
adding additional terms to the solution. In this section we consider inhomogeneities by approximating the
volume conductor by a collection of regions, each one of which is homogeneous, resistive, and isotropic,
where the current density J' is linearly related to the electric field intensity &(Schwan and Kay, 1956).
We show that such inhomogeneities can be taken into account while at the same time retaining the results
obtained in Section 7.2.2 (which were based on the assumption of uniformity).

An inhomogeneous volume conductor can be divided into a finite number of homogeneous regions,

each with a boundary S§;. On these boundaries both the electric potential @ and the normal component of
the current density must be continuous:

DS = DS, (7.6)
J}-‘F@’(S’j)-ﬁj = :‘.:lj-”?ti)“(ﬂ'j-)-ﬁj (7.7)
where the primed and double-primed notations represent the opposite sides of the boundary and #; is

directed from the primed region to the double-primed one.

If dv is a volume element, and ® and ® are two scalar functions that are mathematically well
behaved in each (homogeneous) region, it follows from Green's theorem (Smyth, 1968) that
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> [l (T7 - V) - (PVS - S VEIGS; = [(IVeo, VE-OVia, TT)dy;  (79)

J 5 J Vi

If we make the choice of W = 1/r, where r is the distance from an arbitrary field point to the element of
volume or area in the integration, and @ is the electric potential, and substitute Equations 7.3, 7.6, and 7.7
into Equation 7.8, then we obtain the following useful result (Geselowitz, 1967):

Ar o ®ir)= IT-‘F(HJ vt j (o5 - oDV (%)-d 5 79)
¥ J 5

This equation evaluates the electric potential anywhere within an inhomogeneous volume conductor
containing internal volume sources.

The first term on the right-hand side of Equation 7.9 involving J' corresponds exactly to Equation
7.5 and thus represents the contribution of the volume source. The effect of inhomogeneities is reflected
in the second integral, where (c;" - o;' )@#; is an equivalent double layer source (#; is in the direction of
d3; ). The double layer direction, that of #; or dS;, is the outward surface normal (from the prime to
double-prime region). This can be emphasized by rewriting Equation 7.9 as

4z @ (r) = If"-?(i—)dwz I (o — o @ AV (I;JdEj (7.10)
¥ J 5y

Note that the expression for the field from J' (involving ¥(1/7)) is in exactly the same form as (oi" -
o' ) ®x;, except that the former is a volume source density (volume integral) and the latter a surface
source density (surface integral). In Equations 7.9 and 7.10, and previous equations, the gradient operator
is expressed with respect to the source coordinates whereupon ¥ (1/r) = & /r 2 and &, is from the source
to field. The volume source J' is the primary source, whereas the surface sources that are invoked by the
field established by the primary source (therefore secondary to that source) are referred to as secondary
sources.

We want to point out once again that the first term on the right-hand side of Equation 7.9 describes
the contribution of the volume source, and the second term the contribution of boundaries separating
regions of different conductivity - that is, the contribution of the inhomogeneities within the volume
conductor. This may be exemplified as follows: If the conductivity is the same on both sides of each
boundary S;j - that is, if the volume conductor is homogeneous - the difference (¢"; - ') on each boundary
S; in the second term is zero, and Equation 7.9 (applicable in an inhomogeneous volume conductor)
reduces to Equation 7.5 (applicable in a homogeneous volume conductor).

The purpose of measuring bioelectric signals is to measure their source, not the properties of the
volume conductor with the aid of the source inside it. Therefore, the clinical measurement systems of
bioelectric events should be designed so that the contribution of the second term in Equation 7.9 is as
small as possible. Later, Chapter 11 introduces various methods for minimizing the effect of this term.

Equation 7.9 includes a special case of interest in which the preparation of interest (e.g., the human

" —

body) lies in air, whereupon ¢"; = 0 corresponding to the bounding nonconducting space.
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7.2.4 Quasistatic Conditions

In the description of the volume conductor constituted by the human body, the capacitive component of tissue
impedance is negligible in the frequency band of internal bioelectric events, according to the experimental evidence
of Schwan and Kay (1957). They showed that the volume conductor currents were essentially conduction currents
and required only specification of the tissue resistivity. The electromagnetic propagation effect can also be
neglected (Geselowitz, 1963).

This condition implies that time-varying bioelectric currents and voltages in the human body can be
examined in the conventional quasistatic limit (Plonsey and Heppner, 1967). That is, all currents and fields behave,
at any instant, as if they were stationary. The description of the fields resulting from applied current sources is
based on the understanding that the medium is resistive only, and that the phase of the time variation can be
ignored (i.e., all fields vary synchronously).

7.3 THE CONCEPT OF MODELING

7.3.1 The purpose of modeling

A practical way to investigate the function of living organisms is to construct a model that follows the operation of
the organism as accurately as possible. The model may be considered to represent a hypothesis regarding
physiological observations. Often the hypothesis features complicated interactions between several variables,
whose mutual dependence is difficult to determine experimentally. The behavior of the model should be controlled
by the basic laws of science (e.g., Ohm's law, Kirchhof's law, thermodynamic laws, etc.).

The purpose of the model is to facilitate deduction and to be a manipulative representation of the hypothesis.
It is possible to perform experiments with the model that are not possible with living tissues; these may yield
outputs based on assumed structural parameters and various inputs (including, possibly, noise). One can better
understand the real phenomenon by comparing the model performance to experimental results. The model itself
may also be improved in this way. A hypothesis cannot be accepted before it has been sufficiently analyzed and
proven in detail.

Models have been criticized. For instance, it is claimed that models, which are not primary by construction,
cannot add new information to the biological phenomenon they represent. In other words, models do not have
scientific merit. We should note, however, that all of our concepts of our surroundings are based on models. Our
perception is limited both methodically and conceptually. If we should abandon all "models of models," we would
have to relinquish, for example, all the electric heart models in the following chapters of this textbook. They have
been the basis for meritorious research in theoretical electrocardiology, which has been essential for developing
clinical electrocardiology to its present status. Similarly, the electronic neuron models, which will be briefly
reviewed in Chapter 10, serve as an essential bridge from neurophysiology to neurocomputers. Neurocomputers are
a fascinating new field of computer science with a wide variety of important applications.

In addition to the analysis of the structure and function of organic nature, one should include synthesis as an
important method - that is, the investigation of organic nature by model construction.

7.3.2 Basic Models of the Volume Source

Let us now consider some basic volume source models and their corresponding number of undetermined
coefficients or degrees of freedom. (The reader should be aware, that there are a large number of other models
available, which are not discussed here.) These are:
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Dipole

The (fixed-) dipole model is based on a single dipole with fixed location and variable orientation and magnitude.
This model has three independent variables: the magnitudes of its three components x, y, and z in Cartesian
coordinates (or the dipole magnitude and two direction angles, M, 0, and ¢, in the spherical coordinates).

Moving Dipole
The moving-dipole model is a single dipole that has varying magnitude and orientation, like the fixed dipole, and
additionally variable location. Therefore, it has six independent variables.

Multiple Dipole

The multiple-dipole model includes several dipoles, each representing a certain anatomical region of the heart.
These dipoles are fixed in location and have varying magnitude and varying orientation. If also the orientation is
fixed, each dipole has only one independent variable, the magnitude. Then the number of independent variables is
equal to the number of the dipoles.

Multipole

Just as the dipole is formed from two equal and opposite monopoles placed close together, a quadrupole is formed
from two equal and opposite dipoles that are close together. One can form higher-order source configurations by
continuing in this way (the next being the octapole, etc.). Each such source constitutes a multipole. What is
important about multipoles is that it can be shown that any given source configuration can be expressed as an
infinite sum of multipoles of increasing order (i.e., dipole, quadrupole, octapole, etc.). The size of each component
multipole depends on the particular source distribution. Each multipole component, in turn, is defined by a number
of coefficients. For example, we have already seen that the dipole is described by three coefficients (which can be
identified as the strength of its x, y, and z components). It turns out that the quadrupole has five coefficients - the
octapole seven, and so on. The multipole may be illustrated in different ways. One of them is the spherical
harmonic multipoles, which is given in Figure 7.1.

A summary of these source models and the number of their independent variables are presented in Table 7.1,
and the structure of the models is schematically illustrated in Figure 7.2.

Table 7.1. Various source models and the
number of their independent variables

Model Number of variables

Dipole

Moving dipole 3

Multiple dipole X

Multipole n,(3n)*
Dipole 3
Quadrupole 5
Octapole 7

*n for dipoles with fixed orientation and
3n for dipoles with variable orientation.
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Fig. 7.1. Source-sink illustration of spherical harmonic multipole components (Wikswo and
Swinney, 1984). The figure shows the physical source-sink configurations corresponding to the
multipole components of the dipole (three components), quadrupole (five components), and
octapole (seven components).
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1) DIPOLE
Fixed location
Free direction
Free magnitude
3 variables

3) MULTIPLE DIPOLE
Number of dipoles = N
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Free direction

Free magnitude
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If direction is fixed:
N variables

Fig. 7.2. Models used for representing the volume source.
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7.3.3 Basic Models of the Volume Conductor

The volume conductor can be modeled in one of the following ways, which are classified in order of increasing
complexity:

Infinite, Homogenous

The homogeneous model of the volume conductor with an infinite extent is a trivial case, which completely ignores
the effects of the conductor boundary and internal inhomogeneities.

Finite, Homogenous

Spherical. In its most simple form the finite homogeneous model is a spherical model (with the source at its
center). It turns out that for a dipole source the field at the surface has the same form as in the infinite homogeneous
volume conductor at the same radius except that its magnitude is three times greater. Therefore, this can also be
considered a trivial case.

Realistic Shape, Homogeneous. The finite or bounded homogeneous volume conductor with real shape takes into
consideration the actual outer boundary of the conductor (the thorax, the head, etc.) but ignores internal
inhomogeneities.

Finite, Inhomogeneous

The finite inhomogeneous model takes into consideration the finite dimensions of the conductor and one or more of
the following internal inhomogeneities.

Torso.
Cardiac muscle tissue
High-conductivity intracardiac blood mass
Low-conductivity lung tissue
Surface muscle layer
Nonconducting bones such as the spine and the sternum
Other organs such as the great vessels, the liver, etc.

Head.

The specific conducting regions that are ordinarily identified for the head as a volume conductor
are:

Brain

Cerebrospinal fluid

Skull

Muscles

Scalp

The volume conductor models are summarized in Table 7.2. The resistivities of various tissues are
given in Table 7.3.
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Table 7.2. Various conductor models and their properties

Model Properties

Infinite homogeneous the trivial case; does not consider
the volume conductor's electric properties

or its boundary with air
Finite homogeneous

a. Spherical another trivial case if
o the source is a dipole
b. Realistic shape considers the shape of the outer boundary of

o the thorax but no internal inhomogeneities
Finite inhomogeneous  ¢onsiders the outer boundary of the thorax
and internal inhomogeneities

7.4 THE HUMAN BODY AS A VOLUME CONDUCTOR

7.4.1 Tissue Resistivities

The human body may be considered as a resistive, piecewise homogeneous and linear volume conductor. Most of
the tissue is isotropic. The muscle is, however, strongly anisotropic, and the brain tissue is anisotropic as well.
Figure 7.3 illustrates the cross section of the thorax, and Table 7.3 summarizes the tissue resistivity values of a
number of components of the human body. More comprehensive lists of tissue resistivities are given in Geddes and
Baker (1967), Barber and Brown (1984), and Stuchly and Stuchly (1984).

Table 7.3. Resistivity values for various tissues

Tissue p[Qm] Remarks Reference
Brain 2.2 gray matter Rush and Driscoll, 1969
6.8 white matter Barber and Brown, 1984
5.8 average "
Cerebrospinal fluid ¢ 7 Barber and Brown, 1984
BIIOOd 1.6  Hct=45 Geddes and Sadler, 1973
Easrrila 1 0.7 Barber and Brown, 1984
eart muscle o di
2.5 longitudinal Rush, Abildskov, and McFee, 1963
Skeletal | 56 transverse
eletal muscle : e di
1.9 longitudinal Epstein and Foster, 1982
. transverse
Liver 13.2 )
Lung 7 Rush, Abildskov, and McFee, 1963
112 Schwan and Kay, 1956

Fat 21.7 Rush, Abildskov, and McFee, 1963
. Geddes and Baker, 1967

Bone 25 )
longitudinal Rush and Driscoll, 1969
177 ongitudinal Saha and Williams, 1992
15 circumferential
158 radial (at 100 kHz)
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Tissue Resistivity

[Chm-m]
| I Blood 1.6
{ || Heart 2.5 parallel

muscle 5.6 normal
| Skeletal 1.9 parallel
muscle 13.2 normal

| Lungs 20

| Fat 25
] Bone 177

Fig. 7.3. Cross section of the thorax. The resistivity values are given for six different types of
tissues.

The resistivity of blood depends strongly on the hematocrit, Hct (which denotes the percent volume of the
red blood cells in whole blood) (Geddes and Sadler, 1973). This dependence has an exponential nature
and is given in Equation 7.11:

p =0.537 "% (7.11)

Hugo Fricke studied theoretically the electric conductivity of a suspension of spheroids (Fricke,
1924). When applying this method to the conductivity of blood, we obtain what is called the Maxwell-
Fricke equation:

p= 0556 001225t (7.12)
1= 0.01Hzz

where p =resistivity of blood [Qm]

Hct = hematocrit [%]

Both of these equations give very accurate values. The correlation coefficient of Equation 7.11 to
empirical measurements is r = 0.989. Because the best fitting curve to the measured resistivity values is
slightly nonlinear in a semilogarithmic plot, Equation 7.12 gives better values with very low or very high
hematocrit values. The resistivity of blood is also a function of the movement of the blood (Liebman,
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Pearl, and Bagnol, 1962; Tanaka et al., 1970). This effect is often neglected in practice. Equations 7.11
and 7.12 are presented in Figure 7.4..

2.6 4 p[om]
24 - 1+0.0125 Hct N
0986 570,01 Het -
2.2+ Normal values: H
Male 407 -50.3%
2.0 Female 36.1-44.3%
1.8 -
1.6 —
1.4 —
1.2 -
1.0 -
0.0245 Hct
0.5 0537 e
Hct [%]
0.6

! | | | | | | | | |
10 15 20 25 30 35 40 45 50 55 60

Fig. 7.4. Resistivity of blood as a function of hematocrit (Hct). Equations 7.11 and 7.12 are
depicted in graphical form.

7.4.2 Modeling the Head

The brain is composed of excitable neural tissue, the study of which is of great interest in view of the vital role
played by this organ in human function. Its electric activity, readily measured at the scalp, is denoted the
electroencephalogram (EEG). Brain tissue not only is the location of electric sources (generators), but also
constitutes part of the volume conductor which includes also the skull and scalp.

Regarding volume conductor models, the head has been successfully considered to be a series of concentric
spherical regions (the aforementioned brain, skull, and scalp), as illustrated in Figure 7.5 (Rush and Driscoll, 1969).
In this model, the inner and outer radii of the skull are chosen to be 8 and 8.5 cm, respectively, while the radius of
the head is 9.2 cm. For the brain and the scalp a resistivity of 2.22 Qm is selected, whereas for the skull a resistivity
of 80 x 2.22 Qm = 177 Qm is assigned. These numerical values are given solely to indicate typical (mean)
physiological quantities. Because of the symmetry, and simplicity, this model is easy to construct as either an
electrolytic tank model or a mathematical and computer model. It is also easy to perform calculations with a
spherical geometry. Though this simple model does not consider the anisotrophy and inhomogeneity of the brain
tissue and the cortical bone (Saha and Williams, 1992), it gives results that correspond reasonably well to
measurements.

209 forrds: BioLabor Biofizikai és Laboratériumi Szolg. Kft. www.biolabor.hu



Scalp 2.22 (2m
Skull 177 Om
Brain 2.22 fim

Fig. 7.5. Concentric spherical head model by Rush and Driscoll (1969). The model contains a
region for the brain, scalp, and skull, each of which is considered to be homogeneous.

7.4.3 Modeling the Thorax

The applied electrophysiological preparation that has generated the greatest interest is that of electrocardiography.
The electric sources (generators) lie entirely within the heart, whereas the volume conductor is composed of the
heart plus remaining organs in the thorax. Rush, Abildskov, and McFee (1963) introduced two simple models of
the thorax. In both, the outer boundary has the shape of a human thorax. In the simpler model, the resistivity of the
lungs is selected at 10 Qm. The intracardiac blood is assigned a resistivity of 1 Qm. In the more accurate model, the
resistivity of the lungs is chosen to be 20 Qm. In addition, the cardiac muscle and intercostal muscles are modeled
with a resistivity of 4 Qm, and the intracardiac blood is assigned a resistivity of 1.6 Qm, as described in Figure 7.6.
Because the experimentally found tissue resistivity shows a considerable variation, a similarly wide choice of
values are used in thorax models.

In a first-order electrocardiographic (and particularly in a magnetocardiographic) model, the whole heart can
be considered to be uniform and spherical. In a second-order model, the left ventricular chamber can be modeled
with a sphere of a radius of 5.6 cm and hence a volume of 736 cm’; the cavity is assumed to be filled with blood.

In more recent years, several models have been developed which take into account both shape as well as
conductivity of the heart, intracavitary blood, pericardium, lungs, surface muscle and fat, and bounding body shape.
These include models by Rudy and Plonsey (1979) and Hora ek (1974). A physical inhomogeneous and anisotropic
model of the human torso was constructed and described by Rush (1971). This has also been used as the basis for a
computer model by Hyttinen et al. (1988).
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Fig. 7.6. Simplified thorax models by Rush (1971).

(A) Heart, lung, and blood regions are identified.
(B) The lung region is made uniform with the heart and surface muscle.

7.5 FORWARD AND INVERSE PROBLEM

7.5.1 Forward Problem

The problem in which the source and the conducting medium are known but the field is unknown and must be
determinated, is called the forward problem. The forward problem has a unique solution. It is always possible to
calculate the field with an accuracy that is limited only by the accuracy with which we can describe the source and
volume conductor. However, this problem does not arise in clinical (diagnostic) situations, since in this case only
the field can be measured (noninvasively) at the body surface.

7.5.2 Inverse Problem

The problem in which the field and the conductor are known but the source is unknown, is called the inverse
problem (see Figure 7.7). In medical applications of bioelectric phenomena, it is the inverse problem that has
clinical importance. For instance, in everyday clinical diagnosis the cardiologist and the neurologist seek to
determine the source of the measured bioelectric or biomagnetic signals. The possible pathology affecting the
source provides the basis for their diagnostic decisions - that is, the clinical status of the corresponding organ. What
is the feasibility of finding solutions to the inverse problem? This will be discussed in the next section.
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To determine the FIELD from the known source and conductor is called the
FORWARD PROBLEM

Source

Field

Volume conductor

To determine the SOURCE from the known field and conductor is called the
INVERSE PROBLEM

Fig. 7.7. Forward and inverse problems.

7.5.3 Solvability of the Inverse Problem

Let us discuss the solvability of the inverse problem with a simplified example of a source and a conductor (Figure
7.8). In this model the source is represented by a single battery, and the conductor by a network of two resistors
(McFee and Baule, 1972). Three cases are presented in which the voltage source is placed in different locations
within the network and given different values. Note that although the magnitude of the battery voltage is different
in each case, the output voltage in all three cases is the same, namely 2 V.

One may examine each network with Thevenin's theorem (or its dual Norton's theorem), which states that it
is always possible to replace a combination of voltage sources and associated circuitry with a single equivalent
source and a series impedance. The equivalent emf is the open-circuit voltage, and the series resistance is the
impedance looking into the output terminals with the actual sources short-circuited.

With this approach, we can evaluate the Thevenin equivalent for the three given circuits. In all cases the
equivalent network is the same, namely an emf of 2 V in series with a resistance of 4 Q. This demonstrates that
based on external measurements one can evaluate only the Thevenin network. In this example, we have shown that
this network is compatible with (at least) three actual, but different, networks. One cannot distinguish among these
different inverse candidates without measurements within the source region itself. The example demonstrates the
lack of uniqueness in constructing an inverse solution.
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The solvability of the inverse problem was discussed through the use of a simple electronic circuit as an
example. The first theoretical paper, which stated that the inverse problem does not have a unique solution, was
written by Hermann von Helmholtz (1853)..

A B c D

: : I~ —
2 2%

2al| [Joa 2| [0 g

B I
T o T o o o

B 40

| |

Fig. 7.8. Demonstration of the lack of uniqueness in the inverse problem.

7.5.4 Possible Approaches to the Solution of the Inverse Problem

Cardiac electric activity can be measured on the surface of the thorax as the electrocardiogram. Similarly, the
electromyogram, electroencephalogram, and so on, are signals of muscular, neural, and other origins measured
noninvasively at the body surface. The question facing the clinician is to determine the electric source (generator)
of the measured signal and then to observe whether such source is normal or in what way it is abnormal.

To find the source, given the measured field, is the statement of the inverse problem. As noted above, a
unique solution cannot be found based on external measurements alone. One may therefore ask how it is possible to
reach a clinical diagnosis. Despite the discouraging demonstration in the previous section of the theorem regarding
the lack of uniqueness of the inverse problem, there are several approaches that overcome this dilemma. Four of
these approaches are discussed below:

1. An empirical approach based on the recognition of typical signal patterns that are known to be
associated with certain source configurations.

2. Imposition of physiological constraints is based on the information available on the anatomy and
physiology of the active tissue. This imposes strong limitations on the number of available
solutions.

3. Examining the lead-field pattern, from which the sensitivity distribution of the lead and therefore
the statistically most probable source configuration can be estimated.

4. Modeling the source and the volume conductor using simplified models. The source is
characterized by only a few degrees of freedom (for instance a single dipole which can be
completely determined by three independent measurements).

We discuss these approaches in more detail in the following:

The Empirical Approach

The empirical approach is based on the experience of the physician to recognize typical signal patterns associated
with certain disorders. This means, that the diagnosis is based on the comparison of the recorded signal to a catalog
of patterns associated with clinical disorders. If the signal is identified, the diagnosis can be made. This process has
been formalized using a diagnostic tree. The diagnosis is reached through a sequence of logical steps that are
derived statistically from the accumulated data base. This very same procedure may also be followed in creating a
computer program to automate the diagnostic process (Macfarlane and Lawrie, 1974).

Imposition of Physiological Constraints

As noted, there is no unique solution to the inverse problem. By this we mean that more than one source
configuration will generate fields that are consistent with the measurements (as demonstrated in Section 7.5.3).
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However, it may be possible to select from among these competing solutions one that at the same time meets
physiological expectations. We say that this procedure involves the imposition of physiological constraints. Those
that have been used successfully include a requirement that dipole sources point outward, that the activation
sequence be continuous, that the signal and noise statistics lie in expected ranges, and so on (Pilkington and
Plonsey, 1982).

Lead Field Theoretical Approach

It is possible to determine what is known as the sensitivity distribution of the lead. (To obtain it, we consider the
relative voltage that would be measured at a lead as a function of the position and orientation of a unit dipole
source; the lead sensitivity at a point is the relative lead voltage for a dipole whose direction is adjusted for
maximum response.) One can then make decisions about the activity of the source based upon this information.
This approach depends on the fact that each lead detects the component of the activation dipoles that are in the
direction of the sensitivity of the lead.

For all leads and for a statistically homogeneously distributed source the source of the detected signal is
most probably located at that region of the source where the lead sensitivity is highest and oriented in the direction
of the lead sensitivity. If the lead system is designed to detect certain equivalent source like dipole, quadrupole etc.,
the detected signal represents this equivalent source which is a simplified model of the real source. It must be
pointed out that while this simplified model is not necessarily the source, it probably represents the main
configuration of the source. This approach is discussed in detail later.

Simplified Source Model

The inverse problem may be solved by modeling the source of the bioelectric or biomagnetic signal and the volume
conductor in the following way (Malmivuo, 1976; see Figure 7.9):

1. A model is constructed for the signal source. The model should have a limited number of
independent variables yet still have good correspondence with the physiology and anatomy
associated with the actual source distribution.

2. A model is constructed for the volume conductor. The accuracy of the conductor model must be as
good as or better than that of the source model.

3. At least as many independent measurements are made as the model has independent variables.
Now we have as many equations as we have unknowns, and the variables of the model can be
evaluated.

At this point, the following question is of paramount importance: How good is the correspondence
between the model and the actual physiology?

In the modeling method, certain practical considerations should be noted. First, to reduce the
sensitivity to noise (both in the measured voltages and the measured geometry), the number of
independent measurements at the body surface usually must greatly exceed the number of variables in the
source model. The overspecified equations are then solved using least squares approximation (and
possibly other constraints to achieve greater stability). Second, the sensitivity to noise increases greatly
with an increase in the number of degrees of freedom. So, for example, although greater regional
information could be obtained with greater number of multiple dipoles, the results could actually become
useless if too large a number were selected. At present, the number of dipoles that can be satisfactorily
described in an inverse process, in electrocardiography, is under 10..
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SOLUTION OF
THE INVERSE PROBLEM WITH
THE MODELING METHOD

Fig. 7.9. Solution of the inverse problem based on the modeling method.
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7.5.5 Summary

In Section 7.5 we have described the problem of clinical interest in electrocardiography, magnetocardiography,
electroencephalography, magnetoencephalography, etc. as the solution of an inverse problem. This solution
involves determination of the source configuration responsible for the production of the electric signals that are
measured. Knowledge of this distribution permits clinical diagnoses to be made in a straightforward deterministic
way.

As pointed out previously, from a theoretical standpoint the inverse problem has no unique solution. Added
to this uncertainty is one based on the limitations arising from the limited data points and the inevitable
contamination of noise. However, solutions are possible based on approximations of various kinds, including
purely empirical recognition of signal patterns. Unfortunately, at this time, generalizations are not possible. As
might be expected, this subject is currently under intense study.
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Source-Field Models

8.1 INTRODUCTION

In this chapter, we develop expressions for electric sources of bioelectric origin. These sources are generated by the
passage of current across the membrane of active (excitable) cells, which may be either nerve or muscle. We
consider excitable tissue with very simple models - mainly single cylindrical fibers. But the results are useful in
later chapters when considering whole organs which can be thought of as composed of many such elements. We
see that bioelectric sources can be described as surface/volume distributions of two types of source element,
namely the monopole and/or dipole. Because of the fundamental importance of the monopole and dipole source, we
first proceed to a description of the fields generated by each.

8.2 SOURCE MODELS

8.2.1 Monopole

PRECONDITIONS:
Source: Monopole in a fixed location
Conductor: Infinite, homogeneous

The simplest source configuration is the point source or monopole. If we consider a point current source
of magnitude /, lying in a uniform conducting medium of infinite extent and conductivity o, then current
flow lines must be uniform and directed radially. As a consequence, for a concentric spherical surface of
arbitrary radius r, the current density J crossing this surface must be uniform and will equal /, divided by
the total surface area. That is

J= (8.1)
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since the total current is conserved. Because the current is everywhere in the radial direction, the current
density expressed as a vector is

IO

e

= &, (8.2)

J =

where @, = unit vector in the radial direction, where the origin is at the point source.

Associated with the current flow field defined by Equation 8.2 is a scalar potential field ®@. Since
the field is everywhere radial, there should be no variation of potential along a transverse direction,
namely that on which  is a constant. Consequently, we expect isopotential surfaces to be a series of
concentric spheres surrounding the point source with diminishing potentials for increasing values of 7. In
a formal sense, it is known from field theory that the electric field £is related to a scalar potential @ by

E=-VO (8.3)

From Ohm's law it follows that

J=oF (8.4)

Applying Equations 8.3 and 8.4 to 8.2 results in

'ID

dmr

J =

&, = VD (8.5)

To satisfy Equation 8.5, only the component of % ® in the direction of 7 can arise. This leads to

@ (8.6)

and integration with respect to » leaves us with

= o

= 8.7
dzers &.7)

As suspected above, @ is a constant on surfaces where 7 is constant (i.e., concentric spheres). Normally
the potential for » —»cois set to zero, which accounts for having chosen the constant of integration in
Equation 8.7 equal to zero. We note from Equation 8.7 that equipotential surfaces are indeed concentric
spheres and that the potential magnitude is inversely proportional to the radius (with the origin at the
monopole source).

It is not always convenient to place the coordinate system origin at the point source (e.g., when
considering several such sources). In this case it is desirable to distinguish the coordinates of the point
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source(s) from that of the field point, and we do this by using primes for the field point coordinates.
Equation 8.7 then applies with, r given by

r:J(x—x')2+(y—y'jE+(z—z'j2 (8.8)

!

where each monopole is located at (x, y, z) while the field point is at (x, », 2.

The field described by Equation 8.7 for a point current source is identical to the electrostatic field
from a point charge, provided that Iy is replaced by Qy (the charge magnitude), ¢ is replaced by ¢ (the
permittivity), and Jreplaced by Z. This result is not surprising since if the aforementioned exchanges are
made, the governing equations for current flow convert exactly into those for electrostatics. This means
that simply by interchanging symbols, solutions to problems in electrostatics can be converted into
solutions to equivalent problems in current flow (and vice versa).

The aforementioned is an example of duality. It can be a useful tool when there is an extensive
literature already in existence. Sometimes there may be a limitation in physically realizing a condition in
one or the other dual systems. For example, one can have zero conductivity, but the permittivity can never
be less than that of vacuum. Also, while one can have a point charge, one cannot actually have a physical
point source.

The reader may wonder why there is an interest in a point current source when such is not
physically obtainable. One reason is that in a limited region, the fields may behave as if they arise from
such a source (we say that the source is equivalent). Second, one can actually have two point sources of
opposite polarity, in which case the field of interest can be found by the superposition of point source
fields. In fact, this very situation is examined in the next section.

8.2.2 Dipole

PRECONDITIONS:
Source: Dipole in a fixed location
Conductor: Infinite, homogeneous

In bioelectricity one can never have a single isolated monopole current source because of the need to
conserve charge. But collections of positive and negative monopole sources are physically realizable if
the total sum is zero. The simplest collection, and one that reflects a fundamental bioelectric source, is the
dipole. The dipole consists of two monopoles of opposite sign but equal strength [ (often termed source
and sink) separated by a very small distance, d. In fact, the strict definition requires d —+0, Iy — cowith p
= Iod remaining finite in the limit. The quantity p is the dipole moment or dipole magnitude. The dipole is
a vector whose direction is defined from the negative point source to the positive. In fact, if dis the
displacement from negative to positive point source and & 4 a unit vector in that direction, then

P=lyd =1,d 4 (8.9)
where # = the dipole vector.

A dipole of arbitrary orientation is illustrated in Figure 8.1, where the coordinate system origin is
placed at the negative pole. If the positive pole were also at the origin, the sources would cancel each
other and their field would be zero. Consequently, the field arising from the displacement of the positive
pole from the origin to its actual position (shown in Figure 8.1) is, in fact, the dipole field. But this can be
found by examining the expression describing the potential of the positive monopole and evaluating the
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change in potential brought about by moving the monopole from the origin to its dipole position. And
this, in turn, can be approximated from the first derivative of the monopole's potential field with respect
to the source coordinates evaluated at the origin (as in a Taylor series representation). Specifically, to
obtain the dipole field, a derivative of @ (as given in Equation 8.7) is taken with respect to the direction f
(a directional derivative) and then multiplied by the magnitude of d. Thus, denoting the dipole field @y,
and based on Equation 8.7, we have

(xy'.Z)

v

&

Figure 8.1. Dipole consisting of a sink -/, at origin and a source /, at radius vector d, where d —0. Also
illustrated is a field point at radius vector 7 , and polar (colatitude) angle 6.

The directional derivative in Equation 8.10 equals the component of the gradient in the direction 'so that

®d=?( L }E (8.11)

dmerr

and, finally since Iyd = p

‘I:'d =i?(—]lad (8.12)

The accuracy of Equation 8.10 improves as d —+0, and in fact, p (as noted earlier) is normally defined in
the limit that d —0, I —c0, such that the product /yd is finite and is equal to p. Consequently, Equation
812 is a rigorous (exact) expression for a  mathematically defined dipole.
If the coordinate axes are oriented so that the dipole is directed along z- (the polar) axis and the
dipole is placed at the origin, then carrying out the gradient operation in Equation 8.12 and noting that
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F

D, = - d, i, (8.14)
and
@, =imsf (8.15)
O

In Equation 8.15 the angle 0 is the polar (colatitude) angle. The above expressions can be confirmed by
noting that the gradient operator (in Equation 8.13) acts on the source (unprimed) coordinates in Equation
8.8.

A comparison of the dipole field to a monopole field, by contrasting Equation 8.15 with Equation
8.7, shows that the dipole field varies as (1/r)* whereas the monopole field varies as (1/7). In addition, the
dipole equipotential surfaces are not concentric spheres but, rather, are more complicated, because of the
factor cosf. The maximum dipole potential, for a given value of 7, is on the polar axis (z axis).

8.2.3 Single Isolated Fiber: Transmembrane Current Source

PRECONDITIONS:
Source: Active fiber of finite or infinite length with circular cross-section
Conductor: Infinite, homogeneous

Figure 8.2 illustrates a long, thin excitable fiber lying in a uniform conducting medium of conductivity o,
and of unlimited extent. If we assume the existence of a propagating nerve impulse, then the activation
currents are associated with a transmembrane current distribution i (x). Since the fiber is very thin and
there is axial symmetry, we can describe the transmembrane current as a function of the axial variable x
only. Thus the source description is one-dimensional. The dimension of ip,(x) is current per unit length. A
small element of current i,(x)dx can, therefore, be considered to behave like a point current source (a
monopole) within the extracellular medium. Consequently, from Equation 8.7, we have

d@o _ Em ‘fx

— (8.16)
4?3503*

where r is given by Equation 8.8, @, is the potential field and o, is the conductivity outside the fiber
(i.e.,extracellular conductivity). Integration over the fiber (i.e., with respect to x) gives the total field as

1 i (x)d
T, = R (8.17)
4?3&'0 Jl:x_xrjz +yr2 +Zr2

221 forrds: BioLabor Biofizikai és Laboratériumi Szolg. Kft. www.biolabor.hu



where the source is assumed to lie on the fiber axis, at (x, 0, 0), and the (fixed) field point is at (x’, y', z").

We may apply the equations derived in Chapter 3, Section 3.4.2, to the fiber in Figure 8.2. We may
approximate that the resistance of the interstitial medium », =0 and that similarly the potential in the
interstitial medium @, =0. Using these approximations and Equation 3.42 and noting that ®; - @, =V, we
obtain

18,
L A

i (8.18)

(X' ¥\Z')

\,\gﬁ/'
e

Figure 8.2. A long thin fiber is shown embedded in a uniform conducting medium of conductivity o, and
infinite in extent. The transmembrane current density is described by i,,(x) so that i,,(x)dx, illustrated,

behaves as a point source in the extracellular medium.

so that Equation 8.17 may be written

VAt
1 1 . i

cI:-G = - (8.19)
dmea, A F
In Equation 8.19, r is given by
r :J(x—x'ﬁ 4yt gzt (8.20)

Using the cylindrical resistance formula for r; = 1/(ma’c;) based on a conductivity o; inside the cell,
converts Equation 8.19 into

D dx (8.21)

a’o, I R

I_‘-):
der, F

where a = the fiber radius.
The reader will note that initially @, was set equal to zero and now we have found a solution for @,
which, of course, is not zero. The underlying explanation of this apparent paradox is that ®, was ignored
in deriving Equation 8.18 in comparison with @;. Since the latter is perhaps 100 times larger, dropping @,
at that point should have negligible consequences. The interested reader can pursue the matter by
introducing the value @, found in Equation 8.21 into the rigorous version of Equation 8.18, namely
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2
_ 17U t+%,)

(8.18b)
L A

Im

and then recalculating ®,. This will produce an improved @,. In fact, this iterative procedure can be
repeated until a desired degree of convergence results. Such a procedure is followed in Henriquez and
Plonsey (1988), and is seen to converge very rapidly, demonstrating that for typical physiological
situations the first-order approximation (given by Equation 8.21) is entirely satisfactory.
Equation 8.21 may be integrated by parts. Since at the boundaries of the spatial activation, resting
conditions are present, & V;,/2x = 0 and the integrated term drops out. Accordingly, we are left with

_a%glgiaufn

_ (8.22)
“ da, T dx dx
or
2
8% (Mg lg (8.23)

e da, P dx -

where &, = unit vector in the x-direction.

Since both Equations 8.23 and 8.21 are mathematically the same, they necessarily evaluate the
same field ®@,. The physical interpretation of these expressions is that in Equation 8.21 the source is a
(monopole) current density that lies on the axis, whereas in Equation 8.23 it is an axial dipole also lying
along the axis. These are, of course, equivalent sources. Which source is prefeable to use depends on the
shape of Viy(x); this will be illustrated in the following sections.

8.2.4 Discussion of Transmembrane Current Source

The expression in Equation 8.17 describes the field in the extracellular volume arising from transmembrane current
elements. It is therefore limited to the evaluation of potentials outside the cell and is not valid for describing
intracellular fields.

There are two approximations that underlie Equation 8.17 and that should be kept in mind. First, the
configuration of the current element is approximated as a point source, but the current actually emerges from the
membrane surface rather than a point (see Figure 8.2), and an axial segment could be characterized as a "ring
source." For thin fibers this should be an acceptable simplification. Second, the field expression in Equation 8.17 is
strictly for a point source in an unbounded space, whereas in reality the space is occluded by the fiber itself. This
approximation is normally satisfactory. If, however, the extracellular space is itself limited, then the fiber probably
cannot be ignored and the actual boundary value problem must be solved (Rosenfalck, 1969).

The unbounded extracellular space is important to justify not only the use of the "free-space" point source
field of Equation 8.7 but also the linear core-conductor expression of Equation 8.18, which is based on the
assumption that r, #0 and ®; - @, = V,. For the isolated fiber of "small" radius, Equations 8.21 and 8.23 appear to
be well justified (Trayanova, Henriquez, and Plonsey, 1990).
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8.3 EQUIVALENT VOLUME SOURCE DENSITY

PRECONDITIONS:
Source: Active fiber of finite or infinite length with circular cross-section
Conductor: Infinite, homogeneous

8.3.1 Equivalent Monopole Density

A physical interpretation can be given to Equation 8.21 based on the description of the field of a monopole source
given by Equation 8.7. We note that (ma’c;#°V,/&x%)dx behaves like a point current source. Accordingly, the term
(na’c;@*V,/ 8x%) has the dimensions of current per unit length. This is a function of x, in general; the variation with
x constitutes a description of the source density strength. Since, in fact, the source is considered as lying on the
axis, one can interpret the term (na’c;8°V,/8x°) as a line source density. This is a conceptual as well as a
quantitative view of the origins of the volume conductor field (arising from the action potential described by
Vin()).
Alternatively, one can group the terms in Equation 8.21 as

g I (@4, 192 Ymat dx)

_ (8.24)
dna, F

D

o

and 6;8°V,/3x* now has the dimensions of a volume source density (flow source density) since na’dx is a
volume element. In fact, the interpretation of Equation 8.24 is that the source fills the intracellular fiber
volume, where each source element is a disk of volume ma’dx. The source density is uniform over any
disk cross section.

Of course, neither the volume nor line source is physically real. These sources are therefore
designated as equivalent sources. That is, they are equivalent to the real sources in that the extracellular
fields calculated from them are correct. For the calculation of intracellular fields the true sources (or some
other equivalent source) would be required. We return to this topic in a subsequent section of this chapter.

8.3.2 Equivalent Dipole Density

A comparison of Equation 8.23 with Equation 8.12 identifies the equivalent source of the former expression as a
line dipole density source. This association is highlighted by rewriting Equation 8.23 as

D, = ! .I-(—crl-;fmz aym]?[l]-ﬁxdx (8.25)

4?.?&'0 ox »

One can now identify a dipole element as (-oina’d Vi/@x)dx@ . The dipole is oriented in the positive x-
direction, and the line dipole density is (-oima’d Vil 3X).

Alternatively, the dipole source can be grouped as (-6;8 V/8X)@ y(ma’dx), which identifies (-o;8
V/8X) as a volume dipole density; this fills the intracellular space of the fiber, is oriented in the x-
direction, and is uniform in any cross section. Hence, a dipole element also can be thought of as a disk of
volume (na’dx) with the vector magnitude of (-na’dxcid Vi 8X) .

8.3.3 Lumped Equivalent Sources: Tripole Model

Now consider a typical action potential, V,(x) (the membrane voltage during activation), and its second derivative
with respect to x. As we have learned, the equivalent volume source density is proportional to &V,/@x”, which is
shown schematically in Figure 8.3. Note that positive sources lie in the region x; < x < x, and x; <x < x4, where the
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function #°V,/8x> > 0, whereas negative sources lie in the region x, < x < x3, where 8°V,/&x* < 0. The sum of the
positive sources equals the net negative source. That the field outside the cell, generated by this source, is observed
to be triphasic (two regions of one polarity separated by a region of opposite polarity) is not surprising in view of
the triphasic source distribution.

When the distance to the field point is large compared to the axial extent of each positive or negative source
region, then each such source can be approximated by a single (lumped) monopole at the "center of gravity" of the
respective source distribution. This is illustrated in Figure 8.3. The resultant model is referred to as a tripole source
model (since it consists of three monopoles). Intuitively we expect it to be valid, provided a representative distance
from each source distribution to the field point r; satisfies

! "

> =1 3 1 (8.26)
(23 —x) (x5 =23

. >
':-’f4 - ?T3:'

where 7}, 72, and 73 as well as xj, x,, and x3 are as described in Figure 8.3. On the basis of Equation 8.24,
we can express the tripole field as

(=] & a1 ., a1 (1
5 - - -
a oy | dx |x g% |x Fx |x gx |x Fx |x 7% |x
@D — i 2 1_ 3 24 4 3 (8.27)

4ex, A 5 3
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Figure 8.3. The monophasic action potential (the spatial transmembrane voltage of a propagating
activation wave) Vy(x) and its second axial derivative #°V,/&x” are shown. As explained in the text, the
volume source density is proportional to @*V,/@x”. Consequently, positive sources lie in the region x; < x
< Xx, and x; < x < x4 while negative sources are present in the region x, < x < x3. The sources within the fiber
are illustrated below. When the extent of each source distribution is small compared to the distance to the
field, each distribution can be summed into the lumped source as shown. The distances r, 7,, and r; are
from each lumped source to the distant field point P.
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8.3.4 Mathematical Basis for Double Layer Source (Uniform Bundle)

PRECONDITIONS:
Source: Active-fiber bundle of finite or infinite length with circular cross-section
Conductor: Infinite, homogeneous

The expression for volume dipole density in Section 8.3.2 was given as (-6;2 V', /2x), but this was derived
for an isolated fiber. For the fiber bundle this can be shown to be (-6iC2V;, /8x) (Plonsey and Barr,
1987), where C is a constant that depends on conductivities inside and outside the cell and the fiber
bundle geometry. Its value is normally 0.4.

Figure 8.4 illustrates propagation of the rising phase of a cardiac action potential along a uniform
bundle of fibers. In this figure the leading and trailing edges of the active region (where 2V}, /dx #0) are
assumed to be planar. All fibers in the bundle are assumed to be parallel and carrying similar action
potentials; consequently, each fiber will contain a similar equivalent source density. This is shown as a
dipole density and hence proportional to -2V}, /8x. Note that in the aforementioned region the function -
#Vm (x)/8x is monophasic, and hence the dipole sources are all oriented in the same direction.

When the extent of the rising phase of the action potential (x; - x; in Figure 8.4) is small compared
to the distance to the field point P, then the axial dipole distribution in a small lateral cross-section can be
replaced by a lumped dipole. In this case, the source arising in the bundle as a whole can be approximated
as a dipole sheet, or double layer. For cardiac muscle, because cells are highly interconnected, the fiber
bundle of Figure 8.4 is a good approximation to the behavior of a propagating wave in any cardiac muscle
region regardless of the actual physical fiber orientation.

Measurements on laboratory animals permit the determination at successive instants of time of the
surface marking the furthest advance of propagation. Based upon the foregoing, these isochronal surfaces
may also be viewed, at each instant, as the site of double layer source. Since the thickness of the rising
phase of the propagated cardiac action pulse is only around 0.5 mm (1 ms rise time multiplied by 50 cm/s
propagation velocity), the condition that it be small as compared to the distance to the field point is nearly
always satisfied when considering electrocardiographic voltages at the body surface. The double layer
source model is considered by many to be fundamental to electrocardiography..
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Figure 8.4. The rising phase of an idealized propagated transmembrane action potential for a cardiac cell is
designated V... The wave is propagating to the right. The tissue is at rest to the right of the activation zone
and in a condition of uniform plateau to the left. The equivalent dipole density source is proportional to -&
V. 8x, which is shown. A physical representation of this dipole distribution is also shown. The dipoles lie
in the range x; <x <x,.

8.4 RIGOROUS FORMULATION

8.4.1 Field of a Single Cell of Arbitrary Shape

PRECONDITIONS:
Source: Single cell of arbitrary shape
Conductor: Infinite, homogeneous

The source-field relationship for an isolated fiber is described by Equation 8.17, which identifies the
source density as the transmembrane current. It was pointed out that when this expression was obtained,
the source was approximated as a point (rather than a ring), and that the effect of the fiber itself within the
volume conductor was ignored. For the isolated fiber, where the spatial extent of the nerve impulse is
large compared to the fiber radius, it can be shown that the line-source formula of Equation 8.17 is very
satisfactory (Trayanova, Henriquez, and Plonsey, 1989).

When these conditions are not satisfied, it is desirable to have a rigorous (exact) source expression.
One can show that for an arbitrarily shaped active cell of surface S, the field generated by it at point P,
outside or inside the cell, is

1
dnap

[(eo®0 - 0:2;) v[l]-dg‘* (8.28)

r

Tp
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where @, =field at point P

@; = potential just inside the membrane

@, = potential just outside the membrane

o; = conductivity inside the membrane

0, =conductivity outside the membrane

op = conductivity at the field point
The source identified by Equation 8.28 is a double layer lying on the membrane surface, whose strength is
(60D, - 6i0i)dS and whose orientation is along the outward surface normal (Plonsey, 1974). The field

point P in Equation 8.28 can be intracellular as well as extracellular; however, the coefficient P takes on
the conductivity at the field point.

8.4.2 Field of an Isolated Cylindrical Fiber

PRECONDITIONS:
Source: Isolated cylindrical fiber
Conductor: Infinite, homogeneous

If one applies Equation 8.28 to an isolated cylindrical fiber, then assuming only @, =0 (hence ®; -
@, =V}, ) leads to

1 AV ot
[—=

dma, F

&, = dddx (8.29)

where the integration proceeds over the cross-sectional area A, as well as axially. If the field point is at a
large distance compared to the radius, then Equation 8.29 reduces to Equation 8.21 and Equation 8.17,
thus confirming the earlier work when these approximations are satisfied.

8.5 MATHEMATICAL BASIS FOR MACROSCOPIC VOLUME SOURCE DENSITY (FLOW
SOURCE DENSITY) AND IMPRESSED CURRENT DENSITY

PRECONDITIONS:
Source: Layer of dipole source elements J"'
Conductor: Infinite, homogeneous

In this section we discuss the mathematical basis of the concepts of volume source density (flow source
density), I, and impressed current density, J'.

As a consequence of the activation process in cardiac tissue, the heart behaves as a source of
currents and generates potentials in the surrounding volume conductor. These sources consist of layers of
dipole source elements, which lie in the isochronal activation surfaces, as pointed out earlier. This
description is only an approximation, since it is based on the assumption that cardiac tissue is
homogeneous and isotropic.
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In principle, Equation 8.28 can be applied to each active cell in the heart. Since a cardiac cell is
very small compared to the distance of observation, the radius vector 7in Equation 8.28 may be assumed
to be constant in the integration over each cell. Thus each cell can be thought of as contributing a single
lumped dipole source, which is simply the vector sum of its double layer surface elements. That is, the
dipole for the /" cell, dZ; is given by

dp; = j(g‘o @, - o (I:IJ':IdS_j (8.30)

Since the heart contains around 5 10" cells of which perhaps 5% are active at any moment during
depolarization, the number of dipole source elements is extremely high. Under these conditions one can
define a volume dipole moment density function (i.e., a dipole moment per unit volume) by averaging the
dipole elements in each small volume. That is,

Ji= ol (8.31)

where the denominator is the total volume occupied by a group of N cells, and dS; is the surface of each
volume element dv;. The idea is to make N small enough so that a good resolution is achieved (where the
average is not smoothed unnecessarily), but large enough so that the function J' is continuous from point
to point (and does not reflect the underlying discrete cellular structure). Equation 8.31 is sometimes
described as a coarse-grained average, since we do not let the volume, over which the average is taken,
go to zero. The same considerations apply, for example, in electrostatics, where the charge density is
normally considered to be a smooth, well-behaved function even though it reflects a discrete collection of
finite point sources.

The source function J' is a (volume) dipole density function. Consequently, the field it generates

can be found by superposition, where J'dv is a single dipole to which Equation 8.12 applies. Thus,
summing the field from all such elements, one obtains

D

1 1% =
= Ll Il AL 8.32
“ 4?350-[ [r] Y (8.32)

If one applies the vector identity ‘F-(.,_Ti /r) = ‘m_e"(l/r)-.,_Ti + (l/r)‘m_e"-.,_Ti to Equation 8.32, then

??.'CFO r

I‘F[ ].:fv— : I?'ji.:fv (8.33)

The divergence (or Gauss's) theorem can be applied to the first term on the right-hand side of Equation

8.33, and since J' = 0 at S (all source elements lie within the heart, and none are at the surface of
integration), we get
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I v (8.34)

o

1 =TuJ!
_ I .

dnea,

Reference to Equation 8.7 identifies that

Ig= —Fuf! (8.35)

is a volume source (flow source) density.

As was discussed in Section 7.2.2, one can interpret J' as an impressed (i.e., an applied) current
density. This current density is brought into being by the expenditure of chemical energy (i.e., the
movement of ions due to concentration gradients); it is the primary cause for the establishment of an
electric field. In contrast, we note that the current density, J=oE , that is described by Ohm's law in
Equation 8.4, is induced (i.e., it arises secondary to the presence of the aforementioned electric field &).
Impressed currents J' are not established by the electric field &, since they originate in a source of
energy, which is nonelectric in nature.

8.6 SUMMARY OF THE SOURCE-FIELD MODELS

Table 8.1 gives the equations used in this chapter ( with equation numbers) for the different sources and their fields
in an infinite homogeneous volume conductor.

Table 8.1. Summary of the equations for different sources and their fields.

Source Source element
model description Field @, outside the source Source density
I .
Monopole Io (8.7) (8.7) [point source]
Amerr
. = = prosé o
Dipole =l (8.9) 5 (8.15) [point (dipole) source]
Amerr
line
2.2
Single Gifa C Vm g Vim source
isolated 3 7 2 ox density
08
fiberr»a  in(x)dx (8.16) 2 CF!I m' 9% (8.21)
(where a = 4a, r BEV volume
fiber radius) Cﬁ—zm source
ox density
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Fiber bundle

Tripole

Single cell
(exact
formulation)

Isolated
cylindrical
fiber (exact
formulation)

Multicellular
tissue

(brain or
cardiac

line

2
ox density
2
a“a; ¢ O 1
B ! I_m (_]'Ex'ﬁx (8.23) volum
4o, ¢ ox r
—; 3, e
Ax source
density
volume
- Udl,, source
A density
C=04
Point sources on axis
N N, O, location:  strength:
2 2 4
6,82V, /X "oy | o BXEB + ox3 ;
da, | 1 nm om X, W
>0 <x < 5y |
x2 V., refers here to a triangular (8.27)
>0 <x < N 3
X3 approximation of the actual . N,
>0003 < x < transmembrane potential ' ax |y
X4 (exact form of the equation
in the text). d
) ol
X1 e
ax 3

Double layer with

a strength of

(0,®, - 6:D) lying

in the cell membrane,

(0oD, - 5:D))dS (8.28) ! I[Joﬂiﬁo—cq-@!-:l?[l]-dg (8.28)
dmap r

and oriented in the
outward direction

volume source

i 3 ol 22y (flow source)
(0oD, - 5;)dS (8.28) [| —2——ddax (829) Z¥m density
o, i ox lying within
the fiber
Figy 1 J- —Va T 2 (834) T vqurTwe dipole
drea, F density
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tissue) volume source
-V J' (flow source)
density
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Bidomain Model of Multicellular Volume
Conductors

9.1 INTRODUCTION

Many investigations in electrophysiology involve preparations that contain multiple cells. Examples include the
nerve bundle, which consists of several thousand myelinated fibers; striated whole muscle, which may contain
several thousand individual fibers; the heart, which has on the order of 10" cells; and the brain, which also has
about 10" cells. In modeling the electric behavior of such preparations, the discrete cellular structure may be
important (Spach, 1983). On the other hand, macroscopic (averaged) fields may adequately describe the
phenomena of interest. In the latter case it is possible to replace the discrete structure with an averaged continuum
that represents a considerable simplification. The goal of this chapter is to formulate a continuum representation of
multicellular systems and then to explore its electric properties.
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9.2 CARDIAC MUSCLE CONSIDERED AS A CONTINUUM

The individual cells of cardiac muscle are roughly circular cylinders with a diameter of around 10 um and length of
100 um. The cells are stacked together a lot like bricks and are held together by tight junctions (these behave like
"spot welds" of abutting cellular membranes). In addition, there are gap junctions, which provide for intercellular
communication. The latter introduce a direct intercellular link which permits the movement of small molecules and
ions from the intracellular space of one cell to that of its neighbors.

The gap junction consists of hexagonal arrays of proteins called connexons, which completely penetrate the
pre- and postjunctional abutting membranes. A central channel provides a resistive path for the movement of ions
between the cells. Since such paths are limited in numbers and have very small cross-sectional areas, the effective
junctional resistance is not negligible. In fact, the net junctional resistance between two adjoining cells is thought to
be in the same order of magnitude as the end-to-end resistance of the myoplasm of either cell. On the other hand,
this resistance is perhaps three orders of magnitude less than what it would be if current had to cross the two
abutting membranes, highlighting the importance of the specialized gap-junctional pathway.

The length of the junctional channel is roughly that of the two plasma membranes (2 %8.5 nm) through
which it passes, plus the gap between membranes (3 nm) - or around 20 nm total. This length is very short in
contrast with the length of a cell itself, since the ratio is roughly 20 x10°/100 %10 = 2 %10, Consequently, since
the total junctional and myoplasmic resistances are approximately equal but are distributed over lengths that are in
the ratio of 2 %10, one can think of the junctional resistance as if it were concentrated at a point (i.e., it is a
discrete resistance), whereas the myoplasmic resistance is spread out (or distributed) in character. These two types
of resistance structures affect a propagating wave differently, as we demonstrate below.

A simplified representation of the intracellular space is given in Figure 9.1. The current and potential
distributions within a cell are continuous. However, the junction, in view of its relatively short length but sizable
resistance, must be considered as relatively discrete (lumped), and it introduces jumps in the voltage patterns,
which accounts for the representation given in Figure 9.1.

By confining our interest to potential and current field variations averaged over many cells, we can
approximate the intracellular region described in Figure 9.1 by a continuous (averaged) volume conductor that fills
the total space. The discrete and myoplasmic resistances are taken into account when the averaged values are
obtained. The result is an intracellular conducting medium that is continuous..

Figure 9.1. Cells are represented as ellipsoidal-like regions within which the intracellular potential field is
continuous. The intracellular spaces of adjoining cells are interconnected by junctional (discrete)
resistances representing the effect of gap junctions. These introduce, on a cellular scale, discontinuities in
the potential. If we confine our interest to variations on a macroscopic scale (compared to the size of a
cell), then the medium can be considered to be continuous and fill all space. Such a medium is described by
averaged properties, and the potentials that are evaluated must also be smoothed relative to a cellular
dimension.
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One can apply the same considerations to the interstitial space. Although there are no discrete
elements in this case, the space is nevertheless broken up by the presence of the cells. The fields
associated with this continuum may be considered averaged over a distance of several cells - just as for
the intracellular space.

In summary, the complex cardiac tissue may be replaced by intracellular and interstitial continua,
each filling the space occupied by the actual tissue. The parameters of the continua are derived by a
suitable average of the actual structure. Both spaces are described by the same coordinate system. The
membrane separates both domains at each point. This model has been described and has been designated
as a bidomain (Miller and Geselowitz, 1978; Tung, 1978).

In a more accurate model one can introduce the potential and current field variations on a cellular
scale which are superimposed on variations that take place over longer spatial distances. Usually the
former are of little interest when one is studying the macroscopic behavior of the tissue, and an averaged,
smoothed (continuum) associated with the averaged fields is an acceptable and even a desirable
simplification.

9.3 MATHEMATICAL DESCRIPTION OF THE BIDOMAIN AND ANISOTROPY

The verbal description of the bidomain, discussed above, leads to definitive mathematical expressions for currents
and potentials which, in view of the continuous structure, are in analytical form.

We first introduce the concept of bidomain conductivity (c°). The intracellular and extracellular
conductivities o; and 6,, which we introduced earlier in this book, are microscopic conductivities. That is, they
describe the conductivity at a point, and for an inhomogeneous medium they are functions of position. (Normally
we consider o, a constant that tends to hide the fact that it is defined at each and every point.) The bidomain
conductivities o;” and o,” are averaged values over several cells. That is why the bidomain conductivities depend on
both the microscopic conductivity and the geometry.

We now generalize Equation 7.2 (j = - 0% ®) to an anisotropic conducting medium where the current
density components in the x, y, and z directions are proportional to the gradient of the intracellular scalar potential
function @; in the corresponding directions. Thus, for the intracellular domain, application of Ohm's law gives

- 5, — 2, — 5, —
Ti=-|oh Zii+oh LT vop ik (9.1)
% v o
where J' = current density in the intracellular medium
(O} = electric potential in the intracellular medium

b 52 b
Gix “i¥ Giz =intracellular bidomain conductivities in the X, Y, and z directions

’ ’ ’

i, }, I = unit vectors in the x, y, and z directions

The proportionality constant (i.e., the bidomain conductivity) in each coordinate direction is
considered to be different, reflecting the most general condition. Such anisotropicity is to be expected in
view of the organized character of the tissue with preferential conducting directions. In fact, experimental
observation has shown the conductivities to be highest along fiber directions relative to that in the cross-
fiber direction.
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Correspondingly, in the interstitial domain, assuming anisotropy here also, we have

- A — o — g —
T, =—|ab 22; +G‘3},—O_j +ob ok (9.2)
& v b
where jo = current density in the interstitial medium
O, = electric potential in the interstitial medium

b b
Fox ZoF Cez =interstitial bidomain conductivities in the X, y, and z directions

’ ’ ’

i, }, I = unit vectors in the x, y, and z directions

In general, the conductivity coefficients in the intracellular and interstitial domains can be expected
to be different since they are, essentially, unrelated. Macroscopic measurements performed by Clerc
(1976) and by Roberts and Scher (1982), which evaluated the coefficients in Equations 9.1 and 9.2 for
cardiac muscle, are given in Table 9.1. These represent the only available measurements of these
important parameters; unfortunately they differ substantially (partly because different methods were
used), leaving a degree of uncertainty regarding the correct values.

The fiber orientation (axis) in these determinations was defined as the x coordinate; because of
uniformity in the transverse plane, the conductivities in the y and z directions are equal.

Table 9.1. Bidomain conductivities of cardiac tissue [mS/cm]
measured by Clerc (1976) and Roberts and Scher (1982)

Clerc Roberts and

(1976) Scher (1982)
o 1.74 3.44
J:?f' T 0.193 0.596
Ty 6.25 1.17
Jg.r T 2.36 0.802
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The intracellular current density J; (Equation 9.1) and the interstitial current density J, (Equation 9.2) are
coupled by the need for current conservation. That is, current lost to one region must be gained by the
other. The loss (or gain) is evaluated by the divergence; therefore,

T =T =, (9.3)

where I, = transmembrane current per unit volume [pA/cm?].

In retrospect, the weakness in the bidomain model is that all fields are considered to be spatially
averaged, with a consequent loss in resolution. On the other hand, the behavior of all fields is expressed
by the differential Equations 9.1-9.3 which permits the use of mathematical approaches available in the
literature on mathematical physics.

9.4 ONE-DIMENSIONAL CABLE: A ONE-DIMENSIONAL BIDOMAIN

PRECONDITIONS:
Source: Bundle of parallel muscle fibers; a one-dimensional problem
Conductor: Finite, inhomogeneous, anisotropic bidomain

Consider a large bundle of parallel striated muscle fibers lying in an insulating medium such as oil. If a
large plate electrode is placed at each end and supplied a current step, and all fibers are assumed to be of
essentially equal diameter, the response of each fiber will be the same. Consequently, to consider the
behavior of the bundle, it is sufficient to model any single fiber, which then characterizes all fibers. Such
a prototypical fiber and its associated interstitial space are described in Figure 9.2.

The cross-sectional area of the interstitial space shown in Figure 9.2 is 1/N times the total
interstitial cross-sectional area of the fiber bundle, where N is the number of fibers. Usually, the
interstitial cross-sectional area is less than the intracellular cross-sectional area, since fibers typically
occupy 70-80 % of the total area. Consequently, an electric representation of the preparation in Figure 9.2
is none other than the linear core-conductor model described in Figure 3.7 and Equations 3.41 and 3.42.
In this case the model appropriately and correctly includes the interstitial axial resistance since current in
that path is constrained to the axial direction (as it is for the intracellular space).

‘/Electrode Interstitial
+ i -

Intrajcellular

O
bl -

[

s

?

Figure 9.2. A prototypical fiber of a fiber bundle lying in oil and its response to the application of a steady
current. Since the fiber is sealed, current flow into the intracellular space is spread out along the cylinder
membrane. The ratio of interstitial to intracellular cross-sectional area of the single fiber reflects that of the

bundle as a whole. The figure is not drawn to scale since usually the ratio of fiber length to fiber diameter
is very large.
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A circuit representation for steady-state subthreshold conditions is given in Figure 9.3. In this
figure, r; and r, are the intracellular and interstitial axial resistances per unit length, respectively. Since
steady-state subthreshold conditions are assumed, the membrane behavior can be described by a constant
(leakage) resistance of r, ohms times length (i.e., the capacitive membrane component can be ignored

since &)/t = 0 at steady state; hence the capacitive component of the membrane current iy,c = ¢, & V/ 2t
=0.

rX I & Intracellularspace rhx
—_—
o N S N O I S |
£ il Membrane f I
X A
o B s B S N o —
rx =I: Interatltlalapace r X X,

Figure 9.3. Linear core-conductor model circuit that corresponds to the preparation shown in Figure 9.2.
The applied steady-state current 7, enters the interstitial space on the left and leaves on the right (at these
sites /; = 0). The steady-state subthreshold response is considered; hence the membrane is modeled as a
resistance. Only the first few elements at each end are shown explicitly.

The system, which is modeled by Figure 9.3, is in fact, a continuum. Accordingly it may be
described by appropriate differential equations. In fact, these equations that follow, known as cable

equations, have already been derived and commented on in Chapter 3. In particular, we found (Equation
3.46) that

G {”;m _V_Za ~0 (9.4)
&% A

where the space constant, A, is defined as

.
A " (9.5)
Kt

and has the dimension [cm]. This is the same as in Equation 3.48.

In Equation 9.4, and in the following equations of this chapter, V}, describes the membrane
potential relative to the resting potential. Consequently Vy, corresponds to the V' of Chapter 3. Since,
under resting conditions, there are no currents or signals (though there is a transmembrane voltage),
interest is usually confined entirely to the deviations from the resting condition, and all reference to the
resting potential ignored. The literature will be found to refer to the potential difference from rest without
explicitly stating this to be the case, because it has become so generally recognized. For this more
advanced chapter we have adopted this common practice and have refrained from including the prime
symbol with V.
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For the preparation in Figure 9.2, we anticipate a current of /, to enter the interstitial space at the
left-hand edge (x = - //2), and as it proceeds to the right, a portion crosses the membrane to flow into the
intracellular space. The process is reversed in the right half of the fiber, as a consequence of symmetry.
The boundary condition of /; = 0 at x ==+ / /2 depends on the ends being sealed and the membrane area at
the ends being a very small fraction of the total area. The argument is that although current may cross the
end membranes, the relative area is so small that the relative current must likewise be very small (and
negligible); this argument is supported by analytical studies (Weidmann, 1952). Since the transmembrane
voltage is simply the transmembrane current per unit length times the membrane resistance times unit
length (i.e., Viy = imrm), the antisymmetric (i.e., equal but opposite) condition expected for im must also be
satisfied by V. Since the solution to the differential equation of 9.4 is the sum of hyperbolic sine and
cosine functions, only the former has the correct behavior, and the solution to Equation 9.4 is necessarily:

Vi = K, sinh(x/A) (9.6)

where K, = a constant related to the strength of the supplied current, /..

We found earlier for the axial currents inside and outside the axon, in Equation 3.41 that

I, = 19%, (9.7a)
r, ox
1 8%

I = —~ axﬂ (9.7b)

o

If Equation 9.7 is applied at either end of the preparation (x ==+ / /2), where 8®;/2x = 0 and where [, = I,,
we get

1 8,
Iy=— = I (9.8)
Fooox

Substituting Equation 9.6 into Equation 9.8 permits evaluation of K, as

I A
= 2’ (9.9)
coshidf24)
Consequently, substituting Equation 9.9 into Equation 9.6 results in
v.o=Irh sinh{x/A) 9.10)
cosh(ff24)

We are interested in examining the intracellular and interstitial current behavior over the length of
the fiber. The intracellular and interstitial currents are found by substituting Equation 9.10 into Equations
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9.7a,b, while noting that V,, = @; - @, and that the intracellular and interstitial currents are constrained by
the requirement that /; + I, = I, for all x due to conservation of current. The result is that

hixiA
L=l To Iy ros (xi A (9.1
r+r, K tr, cosh({/24)
- hixi A
I, =1, AT coshixid) (9.12)
r+r,  n+r, cosh(lf24)

The intracellular and interstitial currents described by Equations 9.11 and 9.12 are plotted in Figure
9.4 for the case that / = 20\ and where r; = r,/2. An important feature is that although the total current is
applied to the interstitial space, a portion crosses the fiber membrane to flow in the intracellular space (a
phenomenon described by current redistribution). We note that this redistribution of current from the
interstitial to intracellular space takes place over an axial extent of several lambda. One can conclude that
if the fiber length, expressed in lambdas, is say greater than 10, then in the central region, essentially
complete redistribution has taken place. In this region, current-voltage relations appear as if the
membrane were absent. Indeed, V;, =0 and intracellular and interstitial currents are essentially axial and
constant.

The total impedance presented to the electrodes by the fiber can be evaluated by dividing the
applied voltage V,[Do(-/ /2) - ®,(//2)] by the total current /,. The value of V, can be found by integrating
IR, from x = -/ /2 to x = [ /2 using Equation 9.12. The result is that this impedance Z is

"0 i+ 2nAtanh(i120)] (9.13)
ntn

£ =

If [ ==\ and if r; and r, are assumed to be of the same order of magnitude, then the second term in
the brackets of Equation 9.13 can be neglected relative to the first and the load is essentially that expected
if the membrane were absent (a single domain resistance found from the parallel contribution of 7, and ;).
And if / < , then tanh(//2\) =[/2A and Z = r,l, reflecting the absence of any significant current
redistribution; only the interstitial space supplies a current flow path. When neither inequality holds, Z
reflects some intermediate degree of current redistribution.

The example considered here is a simple illustration of the bidomain model and is included for two
reasons. First, it is a one-dimensional problem and hence mathematically simple. Second, as we have
noted, the preparation considered is, in fact, a continuum. Thus while cardiac muscle was approximated
as a continuum and hence described by a bidomain, in this case a continuum is not just a simplifying
assumption but, in fact, a valid description of the tissue.

Although we have introduced the additional simplification of subthreshold and steady-state
conditions, the basic idea of current redistribution between intracellular and interstitial space should apply
under less restrictive situations. It seems trivial to point out that whenever a multicellular region is
studied, its separate intracellular and interstitial behavior needs to be considered in view of a possible
discontinuity across the membrane (namely Vy,). This is true whether the fibers are considered to be
discrete or continuous..
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Figure 9.4. Distribution of intracellular axial current i;(x) and interstitial axial current i,(x) for the fiber
described in Figure 9.2. The total length is 20A and r; /r, = 1/2. Note that the steady-state conditions which
apply for -7\ <x <7\, approximately suggest #3 A as an extent needed for current redistribution.

9.5 SOLUTION FOR POINT-CURRENT SOURCE IN A THREE-DIMENSIONAL, ISOTROPIC
BIDOMAIN

Precondtions:
Source: Volume of muscle fibers; a three-dimensional problem
CONDUCTOR: Finite, inhomogeneous, anisotropic bidomain

As a further illustration of the bidomain model, we consider a volume of cardiac muscle and assume that
it can be modeled as a bidomain, which is uniform and isotropic. Consequently, in place of Equations 9.1
and 9.2 we may write:

7= -0 VO, (9.14)

Jo=-0" VO, (9.15)
Here Gib and Gob have the dimensions of conductivity, and we refer to them as the isotropic intracellular
and interstitial bidomain conductivities. Their values can be found as follows. Since each domain is
considered to fill the fotal tissue space, which is larger than the actual occupied space, o and o,° are
evaluated from the microscopic conductivities o; and 6, by multiplying by the ratio of the actual to total
volume, thus

oib =0 V. (9.16)

0," =0, (1-v.) (9.16)

where v, = the fraction of muscle occupied by the cells (= 0.70-0.85).
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In these equations the conductivity on the left is a bidomain conductivity (and actually an averaged
conductivity that could be measured only in an adequately large tissue sample), whereas the conductivity
function on the right is the (microscopic) conductivity.

Now the divergence of .J, ordinarily evaluates the transmembrane current density, but we wish to
include the possibility that an additional (applied) point current source has been introduced into the tissue.
Assuming that an interstitial point source of strength 7, is placed at the coordinate origin requires

Vel =12+ 1.6, (9.18)

where 9y is a three-dimensional Dirac delta function, which is defined as
[ 8,0V = | 8,4nrdr

=1 if the volume includes the origin

= 0 if the volume excludes the origin

Equation 9.18 reduces to Equation 9.3 if 7, = 0.
Substituting Equation 9.15 into Equation 9.18 gives

-0 VD, = 1,0 + 1,5, (9.19)

where  I,,” = transmembrane current per unit volume [pA/cm’].

We also require the conservation of current (Equation 9.3):

Vedi=-1 P (9.20)

and substituting Equation 9.14 into Equation 9.20 gives
o V20, = 1,,° (9.21)
Now multiplying Equation 9.19 by po” (= 1/6,°) and Equation 9.21 by pi’ (= 1/6®) and summing results,
we get
VD - Dy ) = V2V = (p + P0” )i + Polaby (9.22)
where b,, = bidomain intracellular resistivity [kQ-cm]
imn = bidomain interstitial resistivity [kQ-cm]

im =transmembrane current per unit volume [pA/cmt]
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Under subthreshold steady-state conditions, the capacitance can be ignored, and consequently, the
membrane is purely resistive. If the surface-to-volume ratio of the cells is uniform and is designated , then
the steady-state transmembrane current per unit volume (Z,," ) is

o
==R=_" (9.23)
Hm

where b, =transmembrane current per unit volume [pA/cmi]
im = surface to volume ratio of the cell [1/cm]
V., = membrane voltage [mV]

R, = membrane resistance times unit area [kQ-cm_]

and where

» R
Py =2

—m (9.24)
X

is membrane resistance times unit volume [kQ+cm]. (The variable py,’ has the dimension of resistivity,
because it represents the contribution of the membranes to the leakage resistivity of a medium including
intracellular and extracellular spaces and the membranes.)

Substituting Equation 9.23 into Equation 9.22 results in the desired differential equation for Vi,
namely

o
Vi =2+ o015, (9.25)
A
where
3
1= % (9.26)
£ + £

The three-dimensional isotropic space constant, defined by Equation 9.26, is in the same form and has
the same dimension [cm] as we evaluated for one-dimensional preparations described by Equation 9.5.

In view of the spherical symmetry, the Laplacian of Vy, (in Equation 9.25) which in spherical
coordinates has the form

1 8§ 58 1 a1 . 2] 1 2]
— | = +2_—— sin +ﬁ—
re o Jr Feosin @ OO A=) resin® & o
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contains only an » dependence, so that we obtain

Fuv,) P,

b
7 5 + gorl 8, (9.27)
The solution when » #0 is
E—r!l
v, = Kp (9.28)

One can take into account the delta function source &, by imposing a consistent boundary condition at the
origin. With this point of view, Kp, in Equation 9.28, is chosen so that the behavior of V;, for »r —0 is
correct. This condition is introduced by integrating each term in Equation 9.25 through a spherical
volume of radius » —0 centered at the origin. The volume integral of the term on the left-hand side of
Equation 9.25 is performed by converting it to a surface integral using the divergence theorem of vector
analysis. One finds that

¥ ¥
[ 720 )4mr2dr = 4z | Va0, rPdr

0 0
- (j)?‘r'r'dg (9.29)
= lim (4?{?‘2 —an]
F—l] e
= 4TEKB

(The last step is achieved by  substituting from  Equation 9.28 for Vi)
Substituting Equation 9.28 for Vm in the second term of Equation 9.25 gives

¥ ¥
J-ﬁdhrrchr = 4?..?5(’3]-3"2_" fAdr =10 (9.30)
1] ‘2'2 n

whereas the third term

,
_[ pgfﬂ 4’ Spdr = pgfﬂ (9.31)
1]

Equation 9.31 follows from the definition of the Dirac delta function 6, given for Equation 9.18.
Substituting Equations 9.29-9.31 into Equation 9.25 demonstrates that V;,, will have the correct behavior
in the » neighborhood of the origin if Kp satisfies
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b
o
Kg =—j;

Substituting Equation 9.32 into Equation 9.28 finally results in

&
R e

4 F

If the scalar function W is defined as

b b
20Ty n 2 Do
bl b fa b

Ga T & Go T &

l.ll_'r:

then, from Equations 9.19 and 9.21, we have

b b b b b b
1'-._-"r21,£r= ﬁ;'op: bfm_ 1‘;01‘71 bfm_ Jgopz bfﬁv
Po t 3 Po+ 5 P+ o

Consequently,
2 Lol
Vo ==y L8y
where
b Pb F&l'b
25 = —=

L h
£a +ﬁ'

(9.32)

(9.33)

(9.34)

(9.35)

(9.36)

and p,” is the total tissue impedance in the absence of a membrane (referred to as a bulk impedance). We
note, in Equation 9.36, that ¥ satisfies a (monodomain) Poisson equation. In fact, ¥ is the field of a point

source at the origin and is given by

B
— 2 f.:z
darr

(9.37)

Since Vi, = @; - ©,, one can express either ®; or @, in terms of Vy, and ¥ by using Equation 9.34. The

result is
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h 2 o]
! !
O =V, + ¥ =-Fal ta (9.38)
o0+ o dz F dmr
2] b b -rfl b
! !
D, = bpo me+T:pffo a ? L Fiia (9.39)
&+ O dz  r dzr

where Equations 9.33 and 9.37 were substituted into Equation 9.38 and 9.39 to obtain the expressions
following the second equal signs. This pair of equations describes the behavior of the component fields.
Note that the boundary condition 7®;/3r = 0 at » —0 is satisfied by Equation 9.38. This condition was
implied in formulating Equation 9.19, where the total source current is described as interstitial.

9.6 FOUR-ELECTRODE IMPEDANCE METHOD APPLIED TO AN ISOTROPIC BIDOMAIN

For a homogeneous isotropic tissue, the experimental evaluation of its resistivity is often performed using the four-
electrode method (Figure 9.5). In this method, four equally spaced electrodes are inserted deep into the tissue. We
assume that the overall extent of the electrode system is small compared to its distance to a boundary, so that the
volume conductor can be approximated as unlimited in extent (unbounded). The outer electrodes carry an applied
current (i.e., [, and -/,) whereas the inner electrodes measure the resulting voltage. The resistivity p (Heiland, 1940)
is given by

dmdV
o= Z

- (9.40)

)
where V; = measured voltage and

d =interelectrode spacing

The advantage in the use of the four-electrode method arises from the separation of the current-
driving and voltage-measuring circuits. In this arrangement the unknown impedance at the electrode-
tissue interface is important only in the voltage- measuring circuit, where it adds a negligible error that
depends on the ratio of electrode impedance to input impedance of the amplifier (ordinarily many times
greater).

For an isotropic bidomain the four-electrode method also may be used to determine the intracellular
and interstitial conductivities p;” and bo. In this case, at least two independent observations must be made
since there are two unknowns. If we assume that a current source of strength 7, is placed on the z axis at a
distance of 3d/2 (i.e., at (0, 0, 1.5d)) and source of strength -/, at (0, 0, -1.5d) (as described in Fig. 9.5,
where d is the spacing between adjacent electrodes), then the resulting interstitial electric fields can be
calculated from Equation 9.39 using superposition. In particular, we are interested in the voltage (V) that
would be measured by the voltage electrodes, where

Vg = -3

(9.41)
=P, (0,0, 054)-P,(0, 0, —0.54)

Application of Equation 9.39 to the point source I, (imagine for this calculation that the origin of
coordinates is at this point) shows that it contributes to ¥z an amount V7*, namely
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Figure 9.5. Four-electrode method for the determination of tissue impedance. The electrode is embedded
in the tissue. The outer elements carry the applied current + /, while the inner elements measure the
resulting voltage (Vz =V, - V). The electrodes are spaced a distance (a) from each other (equispaced). For
a uniform isotropic monodomain, the resistivity p = 2ndVz/I,.

This result is, of course, independent of the actual coordinate origin since it is a unique physical entity.
Correspondingly, the point sink (i.e., the negative source of -1,) contributes an amount ¥;* given by

b b -2d/1 b b b -dfl b
prk _ Pt o 1a? + Ptla  Proode? "7 Pria 9.43
i7 7 b (943)
o0 Am(2d)  Aw(2d) g2 dnd  4nd

Summing Equations 9.42 and 9.43 yields the voltage that would be measured at the voltage electrodes,
namely

b b b b b
v Prla P Po o 24ma P Po o an
7 = g + a
dd Jq:b dad thi" drd

(9.44)

or

b bl
vy _ Pl 1+“”—;(2e‘d”—g‘3‘”‘1) (9.45)
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If measurement of V7 and /, is made with d ==\ then, according to Equation 9.45, this condition results in
a relationship

AV,
pP =22 s a) (9.46)

ol

and the bulk resistivity (p = pob o /(pob +pi)) is obtained. If a second measurement is made with d <\,
then according to Equation 9.45 we have

n_ Admdls

a

(o = A) (9.47)

ol

and only the interstitial resistivity is evaluated (as expected since over the relatively short distance no
current is redistributed to the intracellular space, and hence only the interstitial resistivity influences the
voltage-current behavior). The two experiments permit determination of both p,> and p;°

One important conclusion to be drawn from the work presented in this chapter is illustrated by the
contrast of Equations 9.45 and 9.40. The interpretation of a four-electrode measurement depends on
whether the tissue is a monodomain or bidomain. If it is a bidomain, then the monodomain interpretation
can lead to considerable error, particularly if d <A or if d =) . For such situations Equation 9.45 must be
used. When the tissue is an anisotropic bidomain, it is even more important to use a valid (i.e., Equation
9.45) model in the analysis of four-electrode measurements (Plonsey and Barr, 1986)..
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Electronic Neuron Models

10.1 INTRODUCTION

10.1.1 Electronic Modeling of Excitable Tissue

In Chapters 3 and 4, we discussed the electric behavior of excitable tissues - the nerve and the muscle cell. In that
discussion we have used equations that describe the equivalent electric circuit of the membrane as well as
electronic circuits that represent the passive electric properties of the tissue. From these equations and electric
circuits we utilize the following:

l.

The Nernst equation (Equation 3.21), which expresses the required membrane voltage to
equilibrate the ion flux through the membrane for an existing concentration ratio of a particular
ion species. Because the Nernst equation evaluates the ion moving force due to a concentration
gradient as a voltage [V], this may be represented in equivalent electric circuits as a battery.

The cable model of an axon, which is composed of external and internal resistances as well as the
electric properties of the membrane. This equivalent circuit may be used to calculate the general
cable equation of the axon (Equation 3.45) describing the subthreshold transmembrane voltage
response to a constant current stimulation. The time-varying equations describing the behavior of
the transmembrane voltage due to a step-impulse stimulation are also of interest (though more
complicated). Their solutions were illustrated in Figure 3.11. The equivalent circuit for
(approximate) derivation of the strength-duration equation, Equation 3.58, was shown in Figure
3.12.

The equivalent electric circuits describing the behavior of the axon under conditions of nerve
propagation, or under space-clamp and voltage-clamp conditions, are shown in Figures 4.1, 4.2,
and 4.3; the corresponding equations are 4.1, 4.2, and 4.3, respectively.

The electric circuit for the parallel-conductance model of the membrane, which contains
pathways for sodium, potassium, and chloride ion currents, is illustrated in Figure 4.10, and its
behavior described by Equation 4.10. This equation includes the following passive electric
parameters (electronic components): membrane capacitance, Nernst voltages for sodium,
potassium, and chloride ions, as well as the leakage conductance. Further, the circuit includes the
behavior of the active parameters, the sodium and potassium conductances, as described by the
Hodgkin-Huxley equations (Equations 4.12-4.24).

Thus our understanding of the electric behavior of excitable tissue, and our methods to illustrate it are

strongly tied to the concepts of electronic circuits and to the equations describing their behavior. From this
standpoint it is possible to proceed to realize physically the electronic equivalent circuits for the excitable tissues.
The physical realization of the electronic equivalent circuits of excitable tissues has two main purposes:

1.

It provides us with an opportunity to verify that the models we have constructed really behave the
same as the excitable tissue that they should model - that is, that the model is correct. If the
behavior of the model is not completely correct, we may be able to adjust the properties of the
model and thereby improve our understanding of the behavior of the tissue. This analysis of the
behavior of the excitable tissue is one general purpose of modeling work.

There exists also the possibility of constructing, or synthesizing electronic circuits, whose
behavior is similar to neural tissue, and which perform information processing in a way that also
is similar to nature. In its most advanced form, it is called neural computing.
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In Section 7.3 we discussed the concept of modeling in general. Various models in the neurosciences are
discussed in Miller (1992). In this chapter, we discuss especially electronic neural modeling including
representative examples of electronic neuron models developed to realize the electric behavior of neurons. A more
comprehensive review of the electronic neuron models constructed with discrete electronic components may be
found in Malmivuo (1973) and Reiss et al. (1964).

We should note that simulation of electric circuits with digital computers is another way to investigate the
behavior of the electronic models. Despite this fact, electronic neural modeling is important because it is the bridge
to construction of electronic circuits, which are the elements of neurocomputers.

10.1.2 Neurocomputers

The most important application of electronic neural modeling is the neurocomputer. Although this subject is
beyond the scope of this book, and the theory of neural networks and neurocomputers is not discussed in this
volume, we include here a brief description and include some references to this subject. A good introduction and
short review is in Hecht-Nielsen (1988).

The first computers were called "electric brains." At that time, there was a popular conception that
computers could think, or that such computers would soon be available. In reality, however, even computers of
today must be programmed exactly to do the desired task.

Artificial intelligence has been a popular buzzword for decades. It has produced some useful expert systems,
chess-playing programs, and some limited speech and character recognition systems. These remain in the domain
of carefully crafted algorithmic programs that perform a specific task. A self-programming computer does not
exist. The Turing test of machine intelligence is that a machine is intelligent if in conversing with it, one is unable
to tell whether one is talking to a human or a machine. By this criterion artificial intelligence does not seem any
closer to realization than it was 30 years ago.

If we make an attempt to build an electronic brain, it makes sense to study how a biological brain works and
then to try to imitate nature. This idea has not been ignored by scientists. Real brains, even those of primitive
animals, are, however, enormously complex structures. The human brain contains about 10" neurons, each capable
of storing more than a single bit of data.

Computers are approaching the point at which they could have a comparable memory capacity. Whereas
computer instruction times are measured in nanoseconds, mammalian information processing is done in
milliseconds. However, this speed advantage for the computer is superseded by the massively parallel structure of
the nervous system; each neuron processes information and has a large number of interconnections to other
neurons. Multiprocessor computers are now being built, but making effective use of thousands of processors is a
task that is still a challenge for computer theory (Tonk and Hopfield, 1987).
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10.2 CLASSIFICATION OF NEURON MODELS

In general, neuron models may be divided into categories according to many different criteria. In the following,
four different criteria are presented, to exemplify these classifications (Malmivuo, 1973):

1. The structure of the model may be expressed in terms of
a. Mathematical equations (Hodgkin-Huxley equations, Section 4.4)
b. An imaginary construction following the laws of physics (Eccles model, Section 3.5.4, Fig. 3.2)
c. Constructions, which are physically different from but analogous to the original phenomenon, and
which illustrate the function of their origin (electronic neuron model)
2. Models may describe a phenomenon in different conceptual dimensions. These model aspects include:
Structure (usually illustrated with a mechanical model)
a. Function (usually illustrated with an electronic or mathematical or computer model)
b. Evolution
c. Position in the hierarchy
3. Classification according to the physiological level of the phenomenon:
Intraneuronal level
(1) The membrane in the resting state
(2) The mechanism generating the nerve impulse
(3) The propagation of the nerve impulse in an axon
a. Stimulus and response functions of single neurons
b. Synaptic transmission
c. Interactions between neurons and neuron groups, neuronal nets
d. Psychophysiological level
4. The classification according to the model parameters. The variables included in a nervous system model
have different time constants. On this basis the following classification may be obtained:
Resting parameters
a. Stimulus parameters
b. Recovery parameters
c. Adaptation parameters

This chapter considers representative examples of electronic neuron models (or neuromimes) that describe
the generation of the action impulse, the neuron as an independent unit, and the propagation of the nerve impulse in
the axon.

10.3 MODELS DESCRIBING THE FUNCTION OF THE MEMBRANE

Most of the models describing the excitation mechanism of the membrane are electronic realizations of the
theoretical membrane model of Hodgkin and Huxley (Hodgkin and Huxley, 1952). In the following sections, two
of these realizations are discussed.

10.3.1 The Lewis Membrane Model

Edwin R. Lewis published several electronic membrane models that are based on the Hodgkin-Huxley equations.
The sodium and potassium conductances, synaptic connections, and other functions of the model are realized with
discrete transistors and associated components. All these are parallel circuits connected between nodes representing
the inside and outside of the membrane.

We discuss here the model published by Lewis in 1964. Lewis realized the sodium and potassium
conductances using electronic hardware in the form of active filters, as shown in the block diagram of Figure 10.1.
Since the output of the model is the transmembrane voltage Vm, the potassium current can be evaluated by
multiplying the voltage corresponding to G by (Vi - V). Figure 10.1 is consequently an accurate physical analog
to the Hodgkin-Huxley expressions, and the behavior of the output voltage V,,, corresponds to that predicted by the
Hodgkin-Huxley equations.
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The electronic circuits in the Lewis neuromime had provision for inserting (and varying) not only such
constants as G max» GNa max> V> Vna» Ve, Which enter the Hodgkin-Huxley formulation, but also t, T, T,, Which
allow modifications from the Hodgkin-Huxley equations. The goal of Lewis's research was to simulate the
behavior of a neuronal network, including coupled neurons, each of which is simulated by a neuromime; this is
documented later in this chapter.

In the electronic realization the voltages of the biological membrane are multiplied by 100 to fit the
electronic circuit. In other quantities, the original values of the biological membrane have been used. In the
following, the components of the model are discussed separately.
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Fig. 10.1. The block diagram of the Lewis membrane model.

Potassium Conductance

The circuit simulating the potassium conductance is shown in Figure 10.2. The potassium conductance function
Gx(Vm,t) is generated from the simulated membrane voltage through a nonlinear active filter according to the
Hodgkin-Huxley model (in the figure separated with a dashed line). The three variable resistors in the filter provide
a control over the delay time, rise time, and fall time. The value of the potassium conductance is adjusted with a
potentiometer, which is the amplitude regulator of a multiplier. The multiplier circuit generates the function
Gx(Vmot)' vk, where v is the difference between the potassium potential (Vx) and membrane potential (V},). The
multiplier is based on the quadratic function of two diodes.

Sodium Conductance

In the circuit simulating the sodium conductance, Lewis omitted the multiplier on the basis that the equilibrium
voltage of sodium ions is about 120 mV more positive than the resting voltage. Because we are more interested in
small membrane voltage changes, the gradient of sodium ions may be considered constant. The circuit simulating
the sodium conductance is shown in Figure 10.3. The time constant of the inactivation is defined according to a
varistor. The inactivation decreases monotonically with the depolarization, approximately following the Hodgkin-
Huxley model.
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Simulated Action Pulse

By connecting the components of the membrane model as in Figure 10.4 and stimulating the model analogously to
the real axon, the model generates a membrane action pulse. This simulated action pulse follows the natural action
pulse very accurately. Figure 10.5A illustrates a single action pulse generated by the Lewis membrane model, and

Figure 10.5B shows a series of action pulses..
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Fig. 10.2. The circuit simulating the potassium conductance of the Lewis membrane model.
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Fig. 10.3. Circuit simulating the sodium conductance of the Lewis membrane model.
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Fig. 10.4. The complete Lewis membrane model.
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Fig. 10.5. (A) Single action pulse, and (B) a series of action pulses generated by the Lewis membrane
model.

10.3.2 The Roy Membrane Model

Guy Roy published an electronic membrane model in 1972 (Roy, 1972) and gave it the name "Neurofet." His
model, analogous to Lewis's, is also based on the Hodgkin-Huxley model. Roy used FET transistors to simulate the
sodium and potassium conductances. FETs are well known as adjustable conductors. So the multiplying circuit of
Lewis may be incorporated into a single FET component (Figure 10.6).

In the Roy model the conductance is controlled by a circuit including an operational amplifier, capacitors,
and resistors. This circuit is designed to make the conductance behave according to the Hodgkin-Huxley model.
Roy's main goal was to achieve a very simple model rather than to simulate accurately the Hodgkin-Huxley model.
Nevertheless, the measurements resulting from his model, shown in Figures 10.7 and 10.8, are reasonably close to
the results obtained by Hodgkin and Huxley.

Figure 10.7 illustrates the steady-state values for the potassium and sodium conductances as a function of
applied voltage. Note that for potassium conductance the value given is the steady-state value, which it reaches in

steady state. For sodium the illustrated value is Ghia = iz mﬂmiﬁﬂn ; it is the value that the sodium
conductance would attain if 4 remained at its resting level (4,). (The potassium and sodium conductance values of
Hodgkin and Huxley are from tables 1 and 2, respectively, in Hodgkin and Huxley, 1952.)

The full membrane model was obtained by connecting the potassium and sodium conductances in series
with their respective batteries and simulating the membrane capacitance with a capacitor of 4.7 nF and simulating
the leakage conductance with a resistance of 200 Qk . The results from the simulation of the action pulse are
illustrated in Figure 10.8..

A POTASSIUM CONDUCTANCE B SODIUM CONDUCTANCE
_ + 326 ko | 486 ko
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4
u] u]
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39 ko) m[]39 =l
Mkal 39 092 .8 ko 3.3[uF
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Fig. 10.6. The circuits simulating (A) sodium and (B) potassium conductances in the Roy membrane
model.
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Fig. 10.7. Steady-state values of the (A) GK and (B) G'Na as a function of membrane voltage clamp in the
Roy model (solid lines), compared to the measurements of Hodgkin and Huxley (dots). Vm, the
transmembrane voltage, is related to the resting value of the applied voltage clamp. (See the text for
details.)
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Fig. 10.8. Voltage-clamp measurements made for (A) potassium and (B) sodium conductances in the Roy
model. The voltage steps are 20, 40, 60, 80, and 100 mV. (C) The action pulse simulated with the Roy
model.
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10.4 MODELS DESCRIBING THE CELL AS AN INDEPENDENT UNIT

10.4.1 The Lewis Neuron Model

In this section the neuron model described by Lewis in 1968 (Lewis, 1968) is briefly discussed. The Lewis model is
based on the Hodgkin-Huxley membrane model and the theories of Eccles on synaptic transmission (Eccles, 1964).
The model circuit is illustrated in Figure 10.9.

This neuron model is divided into two sections: the synaptic section and the section generating the action
pulse. Both sections consist of parallel circuits connected to the nodes representing the intracellular and
extracellular sites of the membrane.

The section representing the synaptic junction is divided into two components. One of these represents the
inhibitory junction and the other the excitatory junction. The sensitivity of the section generating the action pulse to
a stimulus introduced at the excitatory synaptic junction is reduced by the voltage introduced at the inhibitory
junction. The section generating the action pulse is based on the Hodgkin-Huxley model. As described earlier, it
consists of the normal circuits simulating the sodium and potassium conductances, the leakage conductance, and
the membrane capacitance. The circuit also includes an amplifier for the output signal.

This neuron model which is relatively complicated, is to be used in research on neural networks. However, it
is actually a simplified version of Lewis's 46-transistor network having the same form. The purpose of this
simplified Lewis model is to simulate the form of the action pulse, not with the highest possible accuracy but,
rather, with a sufficient accuracy provided by a simple model. Figures 10.10, 10.11, and 10.12 show the behavior
of the model compared to the simulation based directly on the Hodgkin and Huxley model.

From Figure 10.10 we find that when the stimulation current begins, the sodium ion current determined by
Lewis (I'va) rises to its peak value almost immediately, whereas the sodium ion current of the Hodgkin-Huxley
biological nerve (/y,) rises much more slowly. The exponential decay of the current occurs at about the same speed
in both. The behavior of the potassium ion current is very similar in both the model and the biological membrane as
simulated by Hodgkin and Huxley.
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Fig. 10.9. The Lewis neuron model from 1968.
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Fig. 10.10. The responses of the sodium and potassium current from the Lewis model (primed) and the
biological neuron (as evaluated by the Hodgkin-Huxley model) to a voltage step. The applied
transmembrane voltage is shown as V,

Figure 10.11A and 10.11B compare the potassium and sodium ion currents of the Lewis model to those in
the Hodgkin-Huxley model, respectively. Figure 10.12 illustrates the action pulse generated by the Lewis
model. The peak magnitude of the simulated sodium current is 10 mA. This magnitude is equivalent to
approximately 450 pA/cm? in the membrane, which is about half of the value calculated by Hodgkin and
Huxley from their model. The maximum potassium current in the circuit is 3 mA, corresponding to 135
pA/cm? in the membrane. The author gave no calibration for the membrane potential or for the time axis.
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Fig. 10.11. (A) Steady-state potassium and (B) peak sodium currents in response to Vm determined in the
Lewis model (solid line) and in the simulation based directly on the Hodgkin and Huxley model (dashed
line) as a function of the membrane voltage. (V, is the voltage applied by the potentiometer in the sodium
current circuit.)
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Fig. 10.12. The action pulse generated by the Lewis model. The corresponding sodium and potassium
currents are also illustrated.
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10.4.2 The Harmon Neuron Model

The electronic realizations of the Hodgkin-Huxley model are very accurate in simulating the function of a
single neuron. However, when one is trying to simulate the function of neural networks, they become
very complicated. Many scientists feel that when simulating large neural networks, the internal
construction of its element may not be too important. It may be satisfactory simply to ensure that the
elements produce an action pulse in response to the stimuli in a manner similar to an actual neuron. On
this basis, Leon D. Harmon constructed a neuron model having a very simple circuit. With this model he
performed experiments in which he simulated many functions characteristic of the neuron (Harmon,
1961).

The circuit of the Harmon neuron model is given in Figure 10.13. Figures 10.13A and 10.13B show
the preliminary and more advanced versions of the circuit, respectively. The model is equipped with five
excitatory inputs which can be adjusted. These include diode circuits representing various synaptic
functions. The signal introduced at excitatory inputs charges the 0.02 pF capacitor which, after reaching a
voltage of about 1.5 V, allows the monostable multivibrator, formed by transistors T1 and T2, to generate
the action pulse. This impulse is amplified by transistors T3 and T4. The output of one neuron model may
drive the inputs of perhaps 100 neighboring neuron models. The basic model also includes an inhibitory
input. A pulse introduced at this input has the effect of decreasing the sensitivity to the excitatory inputs..
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Fig. 10.13. Construction of the Harmon neuron model. (A) The preliminary and (B) the more advanced
version of the circuit.. Without external circuits, Harmon investigated successfully seven properties of his
neuron model. These are illustrated in Figure 10.14 and are described briefly in the following.

Strength-Duration Curve

The Harmon model follows a strength-duration curve similar to that exhibited by the natural neuron. The time scale
is approximately correct, but owing to the electric properties of circuit components, the voltage scale is much
higher. The threshold voltage in the Harmon model is about Vth = 1.5 V, as described in Figure 10.14A.

Latency

Because the model contains no internal circuit that specifically generates a latency, this phenomenon is totally
described by the strength-duration curve which is interpreted as a stimulus-latency curve. The action pulse is
generated only when the stimulus has lasted long enough to generate the action pulse.

Temporal Summation

The model illustrates the stimulus threshold in the case of two consecutive stimulus pulses where the first pulse
leaves the membrane hyperexcitable to the second. Figure 10.14B shows the required amplitude of two 0.8 ms
pulses as a function of their interval, and one notes that the threshold diminishes with a reduced pulse interval,
owing to temporal summation. In all cases the pulse amplitude is reduced from the value required for activation
from a single pulse.

Refractory Period (Recovery of Excitability)

The typical recovery of excitability of the model after an action pulse is shown in Figure 10.14C (curve A). This
curve is similar to that for a biological neuron. The neuron model is absolutely refractory for about 1 ms - that is,
the time of the output pulse. The relative refractory period starts after this (# = 0), and its time constant is about 1.7
ms. Curve A is obtained when the stimulus is applied at one input. Curve B represents the situation when the
stimulus is simultaneously applied to three inputs (see Fig. 10.13).

Output Pulse, Action Impulse

The output pulse obeys the all-or-none law, and its amplitude is quite stable. Its width is, however, to some degree
a function of the pulse frequency. This dependence is given in Figure 10.14D.

Delay

The delay refers, in this case, to the time between the onsets of the stimulus pulse and the output pulse. It is not the
delay in the usual meaning of the term. In the model, the delay is a function of the integration in the input as well as
the refractory condition. Curve A in Figure 10.14E represents the delay when a stimulus is applied to one input, and
curve B when the stimulus is applied to all five excitatory inputs.

Repetitive Excitation

Repetitive excitation refers to the generation of output pulses with a constant input voltage and frequency. Figure
10.14F, curve A, shows the frequency of the output pulse when the input voltage is connected to three inputs, and
curve B when the input voltage is connected to one input. The output frequency follows the input only for high
voltage inputs. As the input is reduced, pulses drop out, and the resulting output frequency is reduced compared to
the input.

By connecting capacitors between the input and output ports of the neuron model, it is possible to realize
much more complex functions. Harmon performed experiments also with combinations of many neuron models.
Furthermore, Harmon investigated propagation of the action pulse by chaining models together. These neuron
models can be applied to simulate quite complex neural networks, and even to model brain waves.
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A STRENGTH-DURATION B TEMPORAL SUMMATION CREFRACTORY RECOVERY
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Fig. 10.14. Properties of the Harmon model.

(A) strength-duration curve;

(B) temporal summation of the stimulus;

(C) refractory recovery;

(D) the output pulse width as a function of the pulse frequency;

(E) the delay between initiation of excitation and initiation of the action pulse as a function of firing
frequency; and

(F) the behavior of the model in repetitive excitation. The input frequency is 700 p/s.

10.5 A MODEL DESCRIBING THE PROPAGATION OF ACTION PULSE IN AXON

Using an iteration of the membrane section of his neuron model described in Section 10.3.1, Lewis simulated the
propagation of an action pulse in a uniform axon and obtained interesting results (Lewis, 1968). The model
structure, illustrated in Figure 10.15, can be seen to include a network of membrane elements as well as axial
resistors representing the intracellular resistance. A total of six membrane elements are depicted in the figure. The
model is an electronic realization of the linear core-conductor model with active membrane elements.

Figures 10.16A and 10.16B illustrate the simulation of propagation of an action pulse in a model consisting
of a chain of axon units, as described in Figure 10.15. Curve A represents the case with a chain of six units, and
curve B a continuous ring of 10 units. In the latter, the signals are recorded from every second unit. A six-unit
model represents a section of a squid axon 4 c¢cm long and 1 mm in diameter. Figure 10.15A shows that the
conduction time of the action pulse from unit three (where it has reached the final form) to unit six (i.e., three
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increments of distance) is 1.4 ms. Because the full six-unit model forms five increments of distance, the modeled
conduction velocity was 17 m/s. This is comparable to spike conduction velocities (14 - 23 m/s) measured in squid
giant axons..
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Fig. 10.16. Propagation of the action pulse in the Lewis model in
(A) a six-unit chain and

(B) a ten-unit ring.

10.6 INTEGRATED CIRCUIT REALIZATIONS

The development of the integrated circuit technology has made it possible to produce electronic neuron models in
large quantities (Mahowald et al., 1992). This makes it possible to use electronic neuron models or neuron-like

circuits as processing elements for electronic computers, called neurocomputers. In the following paragraphs, we
give two examples of these.

Stefan Prange (1988, 1990) has developed an electronic neuron model that is realized with integrated circuit
technology. The circuit includes one neuron with eight synapses. The chip area of the integrated circuit is 4.5 x 5
mm’. The array contains about 200 NPN and 100 PNP transistors, and about 200 of them are used. The circuit is

fabricated with one metal layer with a line width of 12 pm. Because the model is realized with integrated circuit

technology, it is easy to produce in large quantities, which is necessary for simulating neural networks. These
experiments, however, have not yet been made with this model.

In 1991, Misha Mahowald and Rodney Douglas published an integrated circuit realization of electronic
neuron model (Mahowald and Douglas, 1991). It was realized with complementary metal oxide semiconductor
(CMOS) circuits using very large-scale integrated (VLSI) technology. Their model simulates very accurately the

spikes of a neocortical neuron. The power dissipation of the circuit is 60 pW, and it occupies less than 0.1 mm®.
The authors estimate that 100-200 such neurons could be fabricated on a 1 cm x 1 cm die.
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Theoretical Methods
in Bioelectromagnetism

Chapters 11 and 12 examine theoretical methods that have been developed for analyzing the source-field
relationships of bioelectric and biomagnetic phenomena. As discussed in Chapter 7, because bioelectric
sources and conductors are volume sources and volume conductors, the theoretical methods that are used
in analyzing electronic circuits are not applicable in bioelectromagnetism. Therefore, the contents of Part
IIT are central to theoretical bioelectromagnetism.

In Part II1, it is shown that the reciprocity theorem applies to the volume conductor. It serves as the
basis for the lead field theory, which provides a powerful way of evaluating and interpreting measured
signals in terms of their sources. The lead field theory ties together sensitivity distribution of the
measurement of bioelectric sources, distribution of stimulation energy, and sensitivity distribution of
impedance measurements. These points pertain in both electric and magnetic applications.

The two chapters of Part III are linked together by the fact that the same electrophysiological
sources generate both bioelectric and biomagnetic fields. Since the fields behave differently, separate
treatments are necessary. Furthermore, it is important to point out that from a theoretical point of view,
the only difference between bioelectric and biomagnetic measurements is their different sensitivity
distribution in regard to the bioelectric sources. The lead field theory clearly explains the similarities and
differences between the electric and the corresponding magnetic methods. Because different
instrumentation is employed, there are, of course, certain technical differences between these methods.

Although the ECG and MCG are the vehicles for explaining most of the theoretical methods
discussed in Part III, application of these methods is, of course, not limited to electro- and
magnetocardiography; this generalization is emphasized where appropriate.
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Theoretical Methods for
Analyzing Volume Sources
and Volume Conductors

11.1 INTRODUCTION

The first two theoretical methods of this chapter (solid angle theorem and Miller-Geselowitz model) are
used to evaluate the electric field in a volume conductor produced by the source - that is, to solve the
forward problem. After this discussion is a presentation of methods used to evaluate the source of the
electric field from measurements made outside the source, inside or on the surface of the volume
conductor - that is, to solve the inverse problem. These methods are important in designing electrode
configurations  that  optimize the capacity to  obtain the desired information.

In fact, application of each of the following methods usually results in a particular ECG-lead
system. These lead systems are not discussed here in detail because the purpose of this chapter is to show
that these methods of analysis form an independent theory of bioelectricity that is not limited to particular
ECG applications.

The biomagnetic fields resulting from the electric activity of volume sources are discussed in detail
in Chapter 12.

11.2 SOLID ANGLE THEOREM

11.2.1 Inhomogeneous Double Layer

PRECONDITIONS:
SOURCE: Inhomogeneous double layer
CONDUCTOR: Infinite, homogeneous, (finite, inhomogeneous)

The solid angle theorem was developed by the German physicist Hermann von Helmholtz in the middle
of the nineteenth century. In this theory, a double layer is used as the source. Although this topic was
introduced in Chapter 8, we now examine the structure of a double layer in somewhat greater detail.

Suppose that a point current source and a current sink (i.e., a negative source) of the same
magnitude are located close to each other. If their strength is i and the distance between them is d, they
form a dipole moment id as discussed in Section 8.2.2. Consider now a smooth surface of arbitrary shape
lying within a volume conductor. We can uniformly distribute many such dipoles over its surface, with
each dipole placed normal to the surface. In addition, we choose the dipole density to be a well-behaved
function of position - that is, we assume that the number of dipoles in a small area is great enough so that
the density of dipoles can be well approximated with a continuous function. Such a source is called a
double layer (Figure 11.1). If it is denoted by p(S)#, then p(S) denotes a dipole moment density (dipole
moment per unit area) as a function of position, while its direction is denoted by #, the surface normal.
With this notation, p(S)dS is a dipole whose magnitude is p(S)dS, and its direction is normal to the
surface at dS.
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An alternative point of view is to recognize that on one side of the double layer, the sources form a
current density J [A/m?] whereas on the other side the sinks form a current density -/ [A/m”], and that the
conducting sheet between the surfaces of the double layer has a resistivity p. The resistance across this
sheet (of thickness d) for a unit cross-sectional area is

R=pd (11.1)
where R =double layer resistance times unit area [Qm_]

p = resistivity of the medium [Qm]

d = thickness of the double layer [m]

Of course, the double layer arises only in the limit that d —0 while J — cosuch that Jd — p remains finite.

Fig. 11.1. Structure of a double layer. The double layer is formed when the dipole density increases to the
point that it may be considered a continuum. In addition, we require that J — 2, d —0, and Jd —p.

From Ohm's law we note that the double layer has a potential difference of
Vd=CD1-®2=de (112)

Vy = voltage difference over the double layer [V]
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where

4, ©,, = potentials on both sides of the double layer [V]

J = double layer current density [A/m?’]
o = resistivity of the medium [Qm)]
d = double layer thickness [m]

By definition, the double layer forms a dipole moment per unit surface area of
p=Jd (11.3)
where p = dipole moment per unit area [A/m]
J =double layer current density [A/m”’]

d = double layer thickness [m]

As noted, in the general case (nonuniform double layer), p and J are functions of position. Strictly we
require d —+0 while J —cosuch that Jd = p remains finite. (In the case where d is not uniform, then for
Equation 11.2 to be a good approximation it is required that A® not vary significantly over lateral
distances several times d.)

Since #=p# is the dipole moment per unit area (with the direction from negative to positive
source), PdS is an elementary dipole. Its field, given by Equation 8.12 is:

4@ = 4;;5 v(})-ds_*_ (11.4)

since the direction of Fand d5 are the same. Now the solid angle dQ, as defined by Stratton (1941), is:

—d (= v(})-.ﬂ (11.5)

Thus

1
$=— -l
4HJ£;?( ) (11.6)
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Fig. 11.2. A sketch of some isopotential points on an isopotential line of the electric field generated by a
uniform double layer. That these points are equipotential is shown by the identity of the solid angle
magnitudes. According to the convention chosen in Equation 11.5, the sign of the solid angle is negative.

The double layer generates a potential field given by Equation 11.6, where dQ is the element of
solid angle, as seen from the field point as the point of observation (Figure 11.2). This figure provides an
interpretation of the solid angle as a measure of the opening between rays from the field point to the
periphery of the double layer, a form of three-dimensional angle. Equation 11.6 has a particularly simple
form, which readily permits an estimation of the field configuration arising from a given double layer
source function.

This result was first obtained by Helmholtz, who showed that it holds for an infinite, homogeneous,
isotropic, and linear volume conductor. Later the solid angle theorem was also applied to inhomogeneous
volume conductors by utilizing the concept of secondary sources. As discussed in Section 7.2.3, the
inhomogeneous volume conductor may be represented as a homogeneous volume conductor including
secondary sources at the sites of the boundaries. Now the potential field of a double layer source in an
inhomogeneous volume conductor may be calculated with the solid angle theorem by applying it to the
primary and secondary sources in a homogeneous volume conductor.

The Polarity of the Potential Field

We discuss shortly the polarity of the potential field generated by a double layer. This will clarify the
minus sign in Equations 11.5 and 11.6.
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If the double layer is uniform, then the field point's potential is proportional to the total solid angle
subtended at the field point. It is therefore of interest to be able to determine this solid angle. One useful
approach is the following: From the field point, draw lines (rays) to the periphery of the double layer
surface. Now construct a unit sphere centered at the field point. The area of the sphere surface intercepted
by the rays is the solid angle. If the negative sources associated with the double layer face the field point,
then the solid angle will be positive, according to Equation 11.5. This polarity arises from the purely
arbitrary way in which the sign in Equation 11.5 was chosen. Unfortunately, the literature contains both
sign choices in the definition of the solid angle (in this book we adopted the one defined by Stratton,
1941).

For example, suppose a uniform double layer is a circular disk centered at the origin, whose dipoles
are oriented in the x direction. For a field point along the positive x-axis, because the field point faces
positive sources, the solid angle will be negative. However, because of the minus sign in Equation 11.5,
the expression 11.6 also contains a minus sign. As a consequence, the potential, evaluated from Equation
11.6, will be positive, which is the expected polarity.

11.2.2 Uniform Double Layer

PRECONDITIONS:
SOURCE: Uniform double layer
CONDUCTOR: Infinite, homogeneous

A uniform double layer exhibits some interesting properties that are discussed here in this section.

To begin with, we note that Equation 11.6 describes the potential field in an infinite volume
conductor due to an inhomogeneous double layer; this reduces to the following simplified form when the
double layer is uniform:

&= %p(—ﬂ} (11.7)
FLF

Consider a closed uniform double layer. When such a double layer is seen from any point of
observation, it can always be divided into two parts. One is seen from the positive side and the other is
seen from the negative side, though each has exactly the same magnitude solid angle Q, as described in
Figure 11.3. (Double layer sources having more complex form can, of course, be divided into more than
two parts.) These both produce a potential of the same magnitude, but because they have opposite signs,
they cancel each other. As a result, a closed uniform double layer produces a zero field, when considered
in its entirety.

Wilson et al. (1931) applied this principle to electrocardiography, since he understood the cardiac
double layer source formulation. Suppose that the double layer formed by the depolarization in the
ventricles includes a single wavefront, which is represented by a uniform double layer, and has the shape
of a cup. If this cup is closed with a "cover" formed by a double layer of similar strength, then a closed
surface is formed, that does not generate any potential field. From this we can conclude that the double
layer having the shape of a cup can be replaced with a double layer having the shape of the cup's cover,
but with its double layer oriented in the same direction as the cup, as described in Figure 11.4. From this
example one can assert that two uniform double layers with the same periphery generate identical
potential fields.

The field generated by a double layer disk at distances that are much greater than the disk radius
appears to originate from a single dipole. In fact, at large enough distances from any dipole distribution,
the field will appear to originate from a single dipole whose strength and orientation are the vector sum of
the source components, as if they were all located at the same point. This is the reason why the electric
field of the heart during the activation has a dipolar form and the concept of a single electric heart vector
(EHV), as a description of the cardiac source, has a wide application. This is particularly true when the
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activation involves only a single ventricle. The true situation, where the right and left ventricle are
simultaneously active, is more accurately represented by two separate dipoles.

This same argument may be used in explaining the effect of an infarct on the electric field of the
heart. The infarct is a region of dead tissue; it can be represented by the absence of a double layer (i.e., an
opening in a double layer). As a consequence, closing the double layer surface in this case introduces an
additional cover, as shown in Figure 11.4. The latter source is a direct reflection of the effect of the
infarct. (The paradox in this deduction is that the region of dead tissue is represented by an active dipole
directed inward.)

Finally, we summarize the two important properties of uniform double layers defined by the solid
angle theorem:

1. A closed uniform double layer generates a zero external potential field.
2. The potential field of an open uniform double layer is completely defined by the rim of the opening
(Wikswo et al., 1979).

1. A closed uniform double kayer 2. Oneis seen from 3. The other is seen with
may be divided into the positive side the same magnitude angle
twio parts from which ... {solid angle is negative) from the negative side

{solid angle is negative)

4} The solid angles and therefore also the two fields are equal in magnitude bt opposite in sign and they cancel

Fig. 11.3. A closed uniform double layer produces a zero potential field.
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Fig. 11.4. The potential field of an open uniform double layer is completely defined by the rim of its
opening.

11.3 MILLER-GESELOWITZ MODEL

PRECONDITIONS:
SOURCE: Distributed dipole, cellular basis
CONDUCTOR: Finite, homogeneous

W. T. Miller and D. B. Geselowitz (1978) developed a source model that is based directly on the
generators associated with the activation of each cell. Their basic expression is patterned after Equation
8.23, which assigns a dipole source density to the spatial derivative of transmembrane voltage. For three
dimensions, instead of a derivative with respect to a single variable, a gradient (including all three
variables) is required. Consequently,

Ti=6VV, (11.8)
where J' = dipole source density [pA/cm?]
o = conductivity [mS/cm]

W V,, = spatial derivative of transmembrane voltage [mV/cm]
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Miller and Geselowitz used published data to evaluate action potential waveforms at various sites
throughout the heart as well as times of activation. They could thus estimate Viy.r and as a result,
could evaluate the "actual" dipole moment per unit volume at all points. For simplicity the heart was
divided into a finite number of regions, and the net dipole source strength in each region found by
summing J'dV in that region.

In determining the surface potential fields the authors considered the number of dipole elements to
be a small set (of 21) and evaluated the contribution from each. This part of their work constituted a
relatively straightforward solution of the forward problem (dipole source in a bounded volume
conductor). The reconstructed electrocardiograms showed very reasonable qualities.

11.4 LEAD VECTOR

11.4.1 Definition of the Lead Vector

PRECONDITIONS:
SOURCE: Dipole in a fixed location
CONDUCTOR: Finite (infinite), inhomogeneous

We examine the potential field at a point P, within or at the surface of a volume conductor, caused by a
unit dipole 7 (a unit vector in the x direction) in a fixed location Q, as illustrated in Figure 11.5. (Though
the theory, which we will develop, applies to both infinite and finite volume conductors, we discuss here
is only finite volume conductors, for the sake of clarity.)

Suppose that at the point P the potential ®p due to the unit dipole i is cx. (The potential at P must be
evaluated relative to another local point or a remote reference point. Both choices are followed in
electrophysiology, as is explained subsequently. For the present, we assume the existence of some
unspecified remote reference point.) Because of our linearity assumption, the potential ®p corresponding
to a dipole pxi of arbitrary magnitude py is

DOp = ¢, Py (11.9)

A similar expression holds for dipoles in the y and z directions.

The linearity assumption ensures that the principle of superposition holds, and any dipole Pcan be

resolved into three orthogonal components pyi , pyJ, p.f . and the potentials from each superimposed.
Thus we can express the potential ®p at point P, due to any dipole Zat the point Q

Dp = px+ ¢y py + C, P, (11.10)

where the coefficients ¢, ¢y, and ¢, are found (as described above) by energizing the corresponding unit
dipoles at point Q along x-, y-, and z-axes, respectively, and measuring the corresponding field potentials.
Equations 11.9 and 11.10 are expressions of linearity, namely that if the source strength is increased by a
factor c, the resultant voltage is increased by the same factor c. Since no other assumptions were required,
Equation 11.10 is valid for any linear volume conductor, even for an inhomogeneous conductor of finite
extent.
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A LINEARITY

7= ®,=c [ = =y k= &,=c
px,T —* d:p:cxpx 'afJT — ~:I:'p= c.j,p,?, pzﬁ —* cI:-p:Q‘Epz

Because of linearity, in each case &y is linearly proportional to the dipole magnitude.

B SUPERPOSITION C VECTORALGEERA
P N Mathernatically, the potential &
= +p ok : r
P= RITRITE, isthe scalarproduct of dipole g
and the lead vector T
cbp = cxpx+cypy+czpz q:.p = cep
¢ = gt itok P
c
Because of superpositon, &y isproportional to Bl cose
the sum of the paotentials of each dipole component.
The proportionality coefficient is three-dimensional. L
It isthe lead vector © dp = cep = |o||p|-cose

Fig. 11.5. Development of the lead vector concept.

(A) Because of linearity, the potential at a point P in the volume conductor is linearly
proportional to dipoles in each coordinate direction.

(B) By superposition the potential at the point P is proportional to the sum of component
dipoles in each coordinate direction. This proportionality is three-dimensional and can therefore
be considered as a vector #, called lead vector.

(C) The potential at the point P is the scalar product of the source dipole #and the lead
vector .

Equation 11.10 can be simplified if the coefficients ¢y, ¢y, and ¢, are interpreted as the components
of a vector Z. This vector is called the /lead vector. Consequently, Equation 11.10 can be written

Qo= F (11.11)
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The lead vector is a three-dimensional transfer coefficient which describes how a dipole source at a fixed
point Q inside a volume conductor influences the potential at a point within or on the surface of the
volume conductor relative to the potential at a reference location. The value of the lead vector depends
on:

The location Q of the dipole

The location of the field point P

The shape of the volume conductor

The (distribution of the) resistivity of the volume conductor

We tacitly assume that the potential at the reference is zero and hence does not have to be considered.
Note that the value of the lead vector is a property of the lead and volume conductor and does not depend

on the magnitude or direction of the dipole 2.
It can be shown that in an infinite, homogeneous volume conductor the lead vector is given by the
sum of components along lines connecting the source point with each of the two electrode points (each

scaled inversely to its physical length). The same also holds for a spherical, homogeneous volume
conductor, provided that the source is at the center.

11.4.2 Extending the Concept of Lead Vector

In the previous section we considered the lead voltage to be measured relative to a remote reference - as it is in
practice in a so-called unipolar lead. In this section, we consider a bipolar lead formed by a lead pair (where
neither electrode is remote), and examine the corresponding lead vector, as illustrated in Figure 11.6.

For each location Py . . . P, of P, that lies within or at the surface of the volume conductor, we can determine

a lead vector Z, . . . &, for the dipole Zat a fixed location, so that, according to Equation 11.11, we have

o=z 7 (11.12)

Then the potential difference between any two points P; and P; is

Vij=0;- O (11.13)

This describes the voltage that would be measured by the lead whose electrodes are at P; and P;. To what
lead vector does this lead voltage correspond? Consider first the vector ij formed by

gij=Ci-¢; (11.14)
Now the voltage between the points P; and P; given by Equation 11.13 can also be written, by substitution
from Equation 11.12, as follows:

V=®0-®=5,-P-z,-P=5,. F (11.15)
hence identifying z;; as the lead vector for leads P; - P;. From this result we can express any bipolar lead
voltage V as

=t p (11.16)
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where cis a lead vector. We note that Equation 11.16 for bipolar leads is in the same form as Equation
11.11 for monopolar leads. But Equations 11.14-11.16 can be interpreted as that we may first determine
the lead vectors 1 and j corresponding to unipolar leads at Pi and Pj, respectively, and then form their
vector difference, namely ij. Then the voltage between the points Pi and Pj, as evaluated by a bipolar lead,
is the scalar product of the vector ij and the dipole , as shown in Figure 11.6 and described by Equation
11.16.

|,E|-|::|:|5m

-:I:vJ.:cJ.-p:|._ﬁ,J.|-|p|-|:Dsm

B C
C.=C—C.
Ty i -
2 —
- _ o | i
C;I. |‘_',:I |_'_'__'_._|
|p|-cose
L'“U.=-:I:-J.--:Iil.=c!_- -cJ-p=|:cJ_-cJ]|-p=cU_-p 1-:..=cu_-p=|cu_|-|p|-|:nsw,

Fig. 11.6. Determination of the voltage between two points at or within the surface of a volume
conductor.

(A) The potentials @; and ®; at P; and P; due to the dipole #may be established with scalar
products with the lead vectors ¢; and ¢; , respectively.

(B) For determining the voltage V;; between P; and P;, the lead vector ;= &, - £ is first
determined.

(C) The voltage V;; is the scalar product of the lead vector #;; and the dipole #.

11.4.3 Example of Lead Vector Application: Einthoven, Frank, and Burger
Triangles

As an example of lead vector application, we introduce the concept of Einthoven triangle. It represents the lead
vectors of the three limb leads introduced by Einthoven (1908). Einthoven did not consider the effect of the volume
conductor on the lead vectors. The effect of the body surface on the limb leads was published by Ernest Frank
(1954), and the effect of the internal inhomogeneities was published by Burger and van Milaan (1946). The
corresponding lead vector triangles are called Frank triangle and Burger triangle. In this section we discuss these
lead vector triangles in detail.
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Einthoven Triangle

PRECONDITIONS:
SOURCE: Two-dimensional dipole (in the frontal plane) in a fixed location
CONDUCTOR: Infinite, homogeneous volume conductor or homogeneous sphere with the dipole in its center (the

trivial solution)

In Einthoven's electrocardiographic model the cardiac source is a two-dimensional dipole in a fixed
location within a volume conductor that is either infinite and homogeneous or a homogeneous sphere
with the dipole source at its center.

Einthoven first recognized that because the limbs are generally long and thin, no significant
electrocardiographic currents from the torso would be expected to enter them. Accordingly, Einthoven
realized that the potential at the wrist was the same as at the upper arm, while that at the ankle was the
same as at the upper thigh. Einthoven consequently assumed that the functional position of the
measurement sites of the right and left arm and the left leg corresponded to points on the torso which, in
turn, bore a geometric relationship approximating the apices of an equilateral triangle. He further assumed
that the heart generator could be approximated as a single dipole whose position is fixed, but whose
magnitude and orientation could vary. The location of the heart dipole relative to the leads was chosen,
for simplicity, to be at the center of the equilateral triangle. (In matter of fact, the Einthoven assumptions
and model were not truly original, but were based on the earlier suggestions of Augustus Waller (1889).)

Because of the central location of the heart dipole in the Einthoven model, the relationship between
potentials at the apices of the triangle are the same whether the medium is considered uniform and infinite
in extent, or the volume conductor is assumed to be spherical and bounded. For the unbounded case, we
can apply Equation 8.12, which may be written ®p = #- &, /(4nor ?) from which we learn that the lead
vector for a surface point P is &, /(4wor ) - that is, along the radius vector to P. Point P is, according to
Einthoven, at the apices of the equilateral triangle. Consequently, if the right and left arms and left foot
are designated R, L, and F, respectively, then the three corresponding lead vectors &g, 1, and £f are the
radius vectors between the origin and the corresponding points on the equilateral triangle, as illustrated in
Figure 11.7. From the aforementioned, the potentials at these points are:

q)R: ER . E
O =5 -2 (11.17)

(DF=EF'§

Einthoven defined the potential differences between the three pairs of these three points to constitute the
fundamental lead voltages in electrocardiography. These are designated VI, VII, and VIII and are given

by

Vi =®L'®R=EL'p'ER'p=(EL'ER)'p=EI'I__?

Vi =®F'CDR=EF'p'ER'j:_)=(EF_ER).p=E”.

3

(11.18)

VIII=®F'CDL=EF'p'EL'p=(EF'EL)'p=EIII'

3|

Since &g, €1, and £f are equal in magnitude and each is in the direction from the origin to an apex of the
equilateral triangle, then 7|, &1, and &y must lie along a leg of the triangle (since &} = &1 - £y, etc.)
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For example z; is seen to lie oriented horizontally from the right arm to the left arm.

In summary, V;, Vy, and Vi are the three standard limb leads (or scalar leads) in
electrocardiography. From Equation 11.18 one can confirm that the three lead vectors ¢y, 15, and Zyyy also
form an equilateral triangle, the so-called Einthoven triangle, and these are shown in Figure 11.7.

The limb lead voltages are not independent, since Vi + Vi - Vi = 0, as can be verified by
substituting for the left side of this equation the component potentials from Equation 11.18, namely (@, -
D) + (Of - D) - (Dr - Dr), and noting that they do, in fact, sum to zero. The above relationship among
the standard leads is also expressed by ¢-# + zy# - ¢;r# = 0, according to Equation 11.18. Since Pis
arbitrary, this can be satisfied only if 1 + iy - ¢ = 0, which means that the lead vectors form a closed
triangle. We were already aware of this for the Einthoven lead vectors, but the demonstration here is
completely general.

Fig. 11.7. Einthoven triangle. Note the coordinate system that has been applied (the frontal plane
coordinates are shown). It is described in detail in Appendix A.

From the geometry of the equilateral (Einthoven) triangle, we obtain the following values for the
three lead voltages. Please note that the coordinate system differs from that introduced by Einthoven. In
this textbook, the coordinate system of Appendix is applied. In this coordinate system, the positive
directions of the x-, y-, and z-axes point anteriorly, leftward, and superiorly, respectively.

Fr =prosa=p,
Vi :%cosa—igp sino::lip}, —jzipz =0.5p, - 0.87p, (11.19)
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3 : 3
Frrr :—§cosa—3'2:ps1na:—é—p}, —3';:;:12 :—D.5p},—0.8?pz

For the lead vectors we obtain:

E|= J

= 05J-087k (11.20)

RX]
|

Fu=-0.5/-0.87%

Frank Triangle

PRECONDITIONS:
SOURCE: (Three-dimensional) dipole in a fixed location
CONDUCTOR: Finite, homogeneous

Ernest Frank measured the lead vectors of the scalar leads by constructing an electrolytic tank model of
the human torso (Frank, 1954). The following values were obtained for the three lead vectors of the
standard leads. Note that only the relative values of these lead vectors have any meaning because the
measurement procedure was not calibrated.

Z, =-147 +76J +27%
Z,= 167 +30J - 146% (11.21)

Zy= 307 -46J -173%

We noted earlier that since Vi + Vi = Vy, a condition dictated by Kirchhof's law, the corresponding lead
vectors must form a closed triangle. One can confirm from Equation 11.21 that, indeed, ¢; + ¢ - ey =0
and hence form a closed triangle. This triangle is called the Frank triangle, and it is illustrated in Figure
11.8.

Burger Triangle

PRECONDITIONS:
SOURCE: Dipole in a fixed location
CONDUCTOR: Finite, inhomogeneous

Lead vector concept was first introduced by H. C. Burger and J. B. van Milaan (1946, 1947, 1948)
(Burger, 1967), who also used an inhomogeneous electrolyte tank model of the human torso to measure
the lead vectors of standard leads.

The lead vectors, which they measured, are given below. Since these vectors must necessarily form
a closed triangle (just as Einthoven and Frank triangles), this triangle has been called Burger triangle; it is
shown in Figure 11.8. The absolute values of the lead vectors have no special meaning since no
calibration procedure was carried out. The lead vectors obtained were
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7 =-17i +65/ +21k

= 157 + 25/ - 120% (11.22)

RX]
|

Fu= 327 -40J -141k

We may compare the three triangles described so far (i.e., the Einthoven, Frank, and Burger) by
normalizing the y-component of each I vector to 100. This means that the values of the Einthoven triangle
components must be multiplied by 100, those of the Frank triangle by 100/76 = 1.32, and those of the
Burger triangle by 100/65 = 1.54. (The reader can confirm that in each case #; = 100 results.) The
resulting lead vector components are summarized in Table 11.1.

One may notice from the table that in the measurements of Frank and Burger, the introduction of
the boundary of the volume conductor has a great influence on the lead vectors. As pointed out earlier, the
lead vector also depends on the dipole location; thus these comparisons may also reflect differences in the
particular choice that was made. Figure 11.8 illustrates the Einthoven, Frank, and Burger triangles
standardized according to Table 11.1.

Table 11.1. Comparison of the lead vectors for Einthoven, Frank, and Burger Triangles.

Lead Triangle ¢ cy C,
Einthoven 100

a Frank -18 100 36
Burger -26 100 32
Einthoven 50 -87

ci Frank 21 40 -192
Burger 23 38 -185
Einthoven -50 -87

Ci Frank 39 -61 -228
Burger 49 -62 217

The shape of the Frank and Burger triangles was recently investigated by Hyttinen et al. (1988).
Instead of evaluating the lead vectors for a single dipole location, they examined the effect of different
dipole positions within the heart. According to these studies the shape of the Frank and Burger triangles
varies strongly as a function of the location of the assumed heart dipole #. They showed that the
difference between the original Frank and Burger triangles is not necessarily so small if the dipole is
placed at other locations. Figures 11.9 and 11.10 illustrate the variation of the Frank and Burger triangles
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as functions of the source location. Tables 11.2A and 11.2B compare the lead vectors for the Einthoven,
Frank, and Burger triangles from two source locations.

Fig. 11.8. Einthoven (E), Frank (F), and Burger (B) triangles. Note that the Einthoven triangle lies
in the frontal plane, whereas the Frank and Burger triangles are tilted out of the frontal plane. Only
their frontal projections are illustrated here.
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Fig. 11.9. Variation of the Frank triangle as a function of dipole location. The black circle in the
miniature lead vector triangles arising from the Frank torso are superimposed on the site of the
dipole origin. (From Hyttinen et al., 1988.).
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Fig. 11.10. Variation of the Burger triangle as a function of source location. (From Hyttinen et al.,
1988.).

Table 11.2A. Dipole in the center of the heart (septum):
Coefficient for Frank = 1.546; Burger = 1.471

Lead Triangle ¢ cy C,

Einthoven 100

a Frank 2.8 100 -1.8
Burger -31.2 100 -6.4
Einthoven 50 -87

Crr Frank 16 53 -88
Burger 97 46 -162
Einthoven -50 -87

cm Frank 19 -47 -86
Burger 135 -57 -163
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Table 11.2B. Dipole in the center of the transverse projection of the heart,
(0.5 cm anterior, 2 cm left and inferior from the dipole in Table 11.2A):
Coefficient for Frank = 1.976; Burger = 1.784

Lead Triangle ¢, cy ¢,
Einthoven 100

ar Frank -6.6 100 12
Burger -3.0 100 -8.2
Einthoven 50 -87

ci Frank 23 44 -117
Burger 33 62 217
Einthoven -50 -87

Ci Frank 30 -60 -130
Burger 30 -39 -209

11.5 IMAGE SURFACE

11.5.1 The Definition of the Image Surface

PRECONDITIONS:
SOURCE: Dipole in a fixed location
CONDUCTOR: Finite (infinite), inhomogeneous

For a fixed-source dipole lying within a given volume conductor, the lead vector depends solely on the
location of the field point. A lead vector can be found associated with each point on the volume conductor
surface. The tips of these lead vectors sweep out a surface of its own. This latter surface is known as the
image surface.

One could, in principle, consider a physical surface lying within a volume conductor of finite or
infinite extent and evaluate an image surface for it in the same way as described above. However, most
interest is concentrated on the properties of fields at the bounding surface of volume conductors, since
this is where potentials are available for noninvasive measurement. Consequently, the preconditions
adopted in this section are for a dipole source (multiple sources can be considered by superposition) lying
in a bounded conducting region.

We accept, without proof, that any physical volume conductor surface has an associated image
surface for each dipole source location. This seems, intuitively, to require only that no two points on the
physical surface have the same lead vector - a likely condition for convex surfaces. The image surface is a
useful tool in characterizing the properties of the volume conductor, such as the effect of the boundary
shape or of internal inhomogeneities, independent of the effect of the leads. That is, one could compare
image surfaces arising with different inhomogeneities without having to consider any particular lead
system.
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A simple example of an image surface is given by a uniform spherical volume conductor with
dipole source at its center. We have seen that for this situation the unipolar lead vector is proportional to
the radius vector from the center of the sphere to the surface field point. Therefore, the image surface for
a centric source in a uniform sphere is also a sphere.

We now describe how to construct the image surface for any linear volume conductor of arbitrary
shape. It is done by placing a unit dipole source at a chosen point within the conductor in the direction of
each coordinate axis and then measuring the corresponding potential at every point on the surface. For the
unit vector along the x-axis, the potentials correspond precisely to the lead vector component in the x
direction, as is clear from Equation 11.10. Similarly for the y and z directions, and therefore, the lead
vectors can be determined in space from these measurements, and they form the image surface for the
chosen source location. This procedure and the resulting image surface are illustrated in Figure 11.11.

11.5.2 Points Located Inside the Volume Conductor

As noted above, it is not necessary to restrict the physical surface to points on the boundary of the volume
conductor. If we examine the potential inside the volume conductor, we find that it is greater than on the surface;
that is, the closer to the dipole the measurements are made, the larger the voltage, and therefore, the longer the
corresponding lead vector. This means that points inside the volume conductor transform to points in the image
space that lie outside the image surface. The dipole source location itself transforms to infinity in the image space.

Note that the shadings in Figures 11.11, 11.12, and 11.13 are not arbitrary; rather, they illustrate that for the
region inside the volume conductor, the corresponding region in the image space is farther from the origin..

A B c

F =3

L J

C""!-" ¥

Determination of
REALSPACE the Lead “ector [MAGE SPACE

Fig. 11.11. Construction of the image surface for a source point at a volume conductor of arbitrary
shape, illustrated in two dimensions. A one-to-one relation is established between points on the
surface of the volume conductor and the image surface.

(A) Unit vectors are placed at the source location.

(B) By measuring the corresponding potentials at each surface point, the lead vector can be
determined.

(C) The locus described by the family of lead vectors form the image surface.

11.5.3 Points Located Inside the Image Surface

We now examine the real-space behavior of points that lie in the image space within the image surface. Suppose
that an image point is designated P' and that an arbitrary line has been drawn through it. The line intersects the
image surface in points P,' and P,'". Further, the point P' divides this line inside the image surface as follows:
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1 r:E (11.23)
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From Figure 11.12 it is easy to see the following relationship between the lead vectors z, ¢, and &:

ot

+4&

C_'S =0 +

{52—513'=52—a+b(52—51]' (11.24)

Therefore, the voltage, measured in the real space from the point P must fulfill the requirement:

a &
I =y +— -V = —-— (- (11.25)
5 1 QH}( 12— P =D be( 2~ Pl

The point that fulfills this requirement in the real space can be found in the following way: We connect
between the points P; and P, two resistors in series having the resistance ratio of a/b. The point P is at the
interconnection of these resistors. (We must choose R, and Ry large enough so that the current through
this pathway has a negligible effect on @, and ®,.)

IMAGE SPACE REAL SPACE

Fig. 11.12. Determination of the point P in the real space corresponding to an image space point P'
located inside the image surface.

11.5.4 Application of the Image Surface to the Synthesis of Leads

In this section, we examine how the image surface concept can be applied to the identification of an unknown
dipole inside the volume conductor from measurements on the surface. Our initial task is to synthesize an
orthonormal lead system for the measurement of the dipole. The concept "orthonormal" denotes that a lead system
is both (1) orthogonal and (2) normalized; that is, the three measured components of the dipole are orthogonal and
their magnitudes are measured with equal sensitivity. That means, the lead voltage corresponding to equal-value
components of the dipole source is the same.

To begin, we construct the image surface of the volume conductor in relation to the known location of the
dipole. Now we want to find two points on the surface of the volume conductor such that the voltage between them
is proportional only to the y-component of the dipole. Mathematically, this can be formulated as:
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Va1 = Ea1 - = Couepu+ Coy Py + €212 P, (11.26)

and we seek a lead vector #,;, which both lies in the image space and is oriented solely in the direction of
the y-axis. This corresponds to identifying any pair of points on the image surface that are located at the
intersections of a line directed parallel to the y-axis. The voltage measured between those points in real
space is consequently proportional only to the y-component of the dipole. To obtain the largest possible
signal (in order to minimize the noise), we select from all image space points that fulfill the requirement
discussed above, the one with the longest segment (maximum lead vector), as illustrated in Figure 11.13.

If we want to measure all three orthogonal components of the dipole source, we repeat this
procedure for the z and x directions. Because the resulting (maximum) lead vectors are usually not of
equal length, we equalize the measured signals with a resistor network to obtain both an orthogonal and a
normalized lead system. Such a normalizing procedure is described in Figure 11.13 for a two-dimensional
system. In this case two resistors, Rx and Rp, form a simple voltage-divider, and the output voltage is
reduced from the input by Rg/(Ra + Rp). We choose this ratio to compensate for a lead vector amplitude
that is too large. Note that the assumed voltage-divider behavior requires that the voltage-measuring
circuit (amplifier) has a sufficiently high input impedance for negligible loading..

IMAGE SFACE

A, = lpl-cose:

V.= ep=le |- Iplecose=lc | p,

Fig. 11.13. Construction of an orthonormal lead system utilizing the image surface. The lead &3, for
surface points P; - P4 is solely in the z direction, whereas lead z, established for surface points P, - P, is
solely in the y direction. Since |Z34/|Z 12| = (a + b)/b, the resistor network R, and R, is inscribed to reduce
the voltage from (P; - P4) by b/(a + b), hence making the effective z-lead equal to the y-lead in magnitude.

11.5.5 Image Surface of Homogeneous Human Torso

We consider here the image surface of the homogeneous human torso, as determined by Ernest Frank (1954). Frank
constructed a tank model having the form of the thorax. It was oriented upside down because it was easier to insert
and manipulate the source dipole from the larger opening of the model at the level of the abdomen. The model was
filled with a salt solution and therefore formed a finite, homogeneous model.
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Frank adopted the following coordinate system for the model: The model was divided into 12 levels with
horizontal planes at increments of 5 cm (2 inches). The center of the heart was located on level 6 about 4 cm to the
front of the plane located at the midline of the right and left arms, and about 2.5 c¢cm to the left of the sagittal plane
located at the midline of the model. On each horizontal plane, 16 points were established by drawing 8 lines
through the midline of the model (within increments of 22.5°). The intersections of these lines on the surface of the
model were labeled with letters A through P in a clockwise direction starting from the left side, as shown in Figure
11.14. Note that the coordinate axis nomenclature used here is not the same as that adopted by Frank, since the
consistent coordinate system of the Appendix A has been used.

Figures 11.15, 11.16, and 11.17 illustrate the image surface measured by Frank in the three projections - the
frontal, sagittal, and transverse planes. The figures also show the points corresponding to the Einthoven limb leads,

which in this case form the Frank triangle.
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Fig. 11.14. The Frank torso model and coordinate system. (The latter has been related to correspond with
the system adopted in this text and discussed in the Appendix A.).
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Fig. 11.15. The image surface of the Frank torso model in frontal view.
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Fig. 11.16. The image surface of the Frank torso model in sagittal view.
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Fig. 11.17. The image surface of the Frank torso model in transverse view.

11.5.6 Recent Image Surface Studies

In recent years the image surface for the human torso has been investigated using computer models. In these
models one can introduce not only the effect of body shape but also inhomogeneities such as the lungs,
intracavitary blood masses, surface muscle layers, and so on. One such study is that of Horacek (1971), who
included the effect of body shape, lungs, and intracavitary blood. Hordcek observed that the lungs and the
intracavitary blood masses can substantially distort the image surface and consequently cause variations in the body
surface potential distribution. However, because of the complexity of the effect, no simple universal statement can
be made to describe the influence of the inhomogeneities.

A modified Horacek model that includes the skeletal muscle was developed and studied by Gulrajani and
Mailloux (1983). The latter authors chose to examine the effects of modifications introduced by inhomogeneities in
terms of effects on body surface potentials rather than on the image surface per se.

290 forrds: BioLabor Biofizikai és Laboratériumi Szolg. Kft. www.biolabor.hu



11.6 LEAD FIELD

11.6.1 Concepts Used in Connection with Lead Fields

It is useful to start a discussion of the lead field by first introducing the concept of sensitivity distribution. As noted
in Section 11.4.3, the lead vector has different values for different source locations. In other words, for a given field
point, the length and direction of the lead vector vary as a function of the source location. For a fixed field point
location, one can assign to each possible source point the value of the lead vector. In this way we establish a lead
vector field, which is distributed throughout the volume conductor. Because the lead vector indicates the sensitivity

of the lead to the dipole source through ¥ = &- #(Equation 11.16), the distribution of the magnitude and the
direction of the lead vector is at the same time the distribution of the sensitivity of the lead to the dipole source as a
function of its location and orientation. This is further illustrated in Figure 11.18. (It should be emphasized that the
concept of sensitivity distribution is not limited to the detection of bioelectric sources. The same concept is
applicable also to the measurement of tissue impedance.)

For later use we will define the concepts of isosensitivity surface or isosensitivity line and half-sensitivity
volume. An isosensitivity surface is a surface in the volume conductor, where the absolute value of the sensitivity is
constant. When sensitivity distributions are illustrated with two-dimensional figures, the isosensitivity surface is
illustrated with isosensitivity line(s). The concept of isosensitivity surface is used to enhance our view of the
distribution of the magnitude of the sensitivity. The isosensitivity surface where the absolute value of the sensitivity
is one half of its maximum value within the volume conductor separates a volume called half-sensitivity volume.
This concept can be used to indicate how concentrated the detector's sensitivity distribution is..
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For different source locations

o o
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The lead vector ¢ takes on different values hath in direction and in magnitude

[

Therefore, the lead detects the source at different locations with a different sensitivity

The signal inthe leads is: V=cen

W, — — W,

| W

2 3

Sothe sensitivity has a certain distribution as a function of location. This is called:
SENSITHITY DISTRIBUTION

Fig. 11.18. The concept of sensitivity distribution.
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11.6.2 Definition of the Lead Field

PRECONDITIONS:
SOURCE: Volume source
CONDUCTOR: Finite (infinite), inhomogeneous

The concept of lead field is a straightforward extension of the concept of lead vector. In the evaluation of
a lead field, one follows a procedure that is just the reverse of that followed in obtaining the image
surface. These may be contrasted as follows (see Figure 11.19).

In our definition of the image surface (Section 11.5.1):

1. The source was a dipole #located at a fixed point.
2. The measurement point was varied over the surface of the volume conductor (Figure 11.11A).

The image surface was generated by the tips of the lead vectors Zassociated with all surface sites (Figure
11.11C).
In evaluating the lead field we proceed the other way around:

We assume a fixed electrode pair defining a lead (fixed measurement sites).

We observe the behavior of the lead vector zas a function of the location of the dipole source &
varying throughout the volume conductor (Figure 11.19A)

3. We assign zto the location of Z(which for a volume source is a field of dipole elements 2} ).

N —

With this latter procedure, it is possible to evaluate the variation of the lead vector zwithin the volume
conductor. This field of lead vectors is called the lead field J, as noted earlier and illustrated in Figure
11.19A. Therefore, the lead field theory applies to distributed volume sources. The procedure may be
carried out with a finite or an infinite volume conductor. In any physically realizable system, the volume
conductor is necessarily finite, of course. Thus the preconditions for the discussion on the lead field are
those defined above.

From the behavior of the lead vector Zas a function of the location k& of the dipole source #, we can
easily determine the lead voltage J1 generated by a distributed volume source (see Figure11.19B). The
contribution Vi of each elementary dipole 7 « to the lead voltage is obtained, as was explained in Section
11.4.1, with Equation 11.16 by forming the scalar product of the dipole element P\ and the lead vector Z
at that location, namely Vi = & - P k. The total contribution of all dipole elements - that is, the total lead
voltage - is, according to the principle of superposition, the sum of the contributions of each dipole
element 2y, namely
VL =Xz k E k-

Mathematically this will be described later by Equations 11.30 and 11.31, where the dipole element P is
replaced by the impressed current source element J'dV (where J' has the dimensions of dipole moment
per unit volume).
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The lead field has a very important property, which arises from the reciprocity theorem of Helmholtz. 1t is
that for any lead, the lead field g is exactly the same as the current flow field resulting from the
application of a unit current / . , called the reciprocal current, to the lead (Figure 11.19C). In this
procedure the lead is said to be reciprocally energized. 1t is this correspondence that makes the lead field
concept so very powerful in the following way:

1. With the concept of lead field it is possible both to visualize and to evaluate quantitatively the
sensitivity distribution of a lead within a volume conductor, since it is the same as the field of a
reciprocal current.

2. The actual measurement of sensitivity distribution (using either a torso-shaped tank model or a
computer model) can be accomplished more easily using reciprocity.

3. Because the reciprocal current corresponds to the stimulating current introduced by a lead in
electric stimulation, they have exactly the same distribution.

4. The sensitivity distribution in the measurement of electric impedance of the tissue may be
similarly determined with the concept of lead field.

5. Because the principle of reciprocity and the concept of lead field are valid also in magnetic fields,
all of these points are true for the corresponding magnetic methods as well.

6. Furthermore, the concept of lead field easily explains the similarities and differences in the
sensitivity distributions between the corresponding electric and magnetic methods.

The lead field may be visualized either as a field of lead vectors, as in Figure 11.19C, or with lead
field current flow lines, as in Figure 11.19D. The relationship between these two methods is, obviously,
that the lead vectors are tangents to the lead field current flow lines and that their length is proportional to
the density of the flow lines. The reciprocity theorem is further discussed in the next section in greater
detail.
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The field of the lead vectars © isthe lead field J Each dipole element g
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contributes tothe lead valtage by 'u:{ =Cefl
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sum of the lead voltage elements W =3 celn
c RECIPROCITY k

Because of reciprocity, the field of lead vectaors J Thelead field may also be illustrated
is the same asthe current field J_ raised by with lead field current flow lines.
feeding a reciprocal current of 1 Ato the lead.

Fig. 11.19. The definition of the lead field and different ways to illustrate it.

(A) When defining the lead field, we assume a fixed electrode pair constituting a lead, and
we observe the behavior of the lead vector Zas a function of the location k& of the dipole source
within the volume conductor. This field of lead vectors is the lead field J;.

(B) When we know the lead vector Zat each location &, we obtain the contribution of each
dipole element | to the lead voltage: Vi = £\ - #\. Due to superposition, the total lead voltage V1.
is the sum of the lead voltage elements.

(C) Based on the reciprocity theorem, the lead field J 1 is the same as the electric current
field if a (reciprocal) current /, of 1 A is introduced to the lead. The lead voltage due to a volume
source of distribution J' is obtained through integrating the dot product of the lead field current
density and the source density throughout the volume source.

(D) The lead field may also be illustrated with the lead field current flow lines.
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11.6.3 Reciprocity Theorem: the Historical Approach

The lead field theory that is discussed in this section is based on a general theory of reciprocity, introduced by
Hermann von Helmbholtz in 1853 (Helmholtz, 1853). Its application to the formulation of lead field theory was
carried out 100 years later by Richard McFee and Franklin D. Johnston (1953, 1954,ab) as well as by Robert
Plonsey (1963) and by Jaakko Malmivuo (1976). Before describing the lead field theory in more detail, we
consider first the reciprocity theorem of Helmholtz.

Though Helmholtz introduced the principle of reciprocity in connection with bioelectricity, it is a general
property of linear systems, not limited only to bioelectricity. Helmholtz described the principle of reciprocity, in its
original form, with the following example, which, it should be noted, also includes (for the first time) the principle
of superposition.

A galvanometer is connected to the surface of the body. Now every single element of a biological
electromotive surface produces such a current in the galvanometer circuit as would flow through that element itself
if its electromotive force were impressed on the galvanometer wire. If one adds the effects of all the electromotive
surface elements, the effect of each of which are found in the manner described, he will have the value of the total
current through the galvanometer.

In other words, it is possible to swap the location of the (dipole) source and the detector without any change
in the detected signal amplitudes. (Note that Helmholtz used a voltage double layer source and measured the
current produced by it, whereas in our case the source is considered to be a current dipole or a collection of dipoles
such as implied in a double layer source, whereas the measured signal is a voltage.)

Helmbholtz illustrated the leading principle of the reciprocity theorem with the following example, described
in Figure 11.20. This example includes two cases: case 1 and case 2.

1

g

(3
o

it o I

#)-1%)

Fig. 11.20. Illustration of the reciprocity theorem of Helmholtz.
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We first consider case 1: A galvanometer (i.e., an electric current detector) G is connected at the surface
of the volume conductor. Inside the conductor there is a differential element of double layer source,
whose voltage is V4 and which causes a current /i in the galvanometer circuit.

We now consider case 2: The double layer source element is first removed from the volume
conductor. Then the galvanometer is replaced by an electromotive force of the same magnitude Vj as the
voltage of the double layer source. This produces a reciprocal current i, through the same differential area
at the (removed) double layer source element in the volume conductor.

Now the reciprocity theorem of Helmholtz asserts that the current Iy flowing in case 1 through the
galvanometer is equal to the current i, flowing in case 2 through the differential area located at the
(removed) double layer source element. This result is expressed in equation form as:

[
L (11.27)
Va Vg

where the left-hand side of the equation denotes case 1 and the right-hand side case 2.

Demonstration of the Consistency of the Reciprocity Theorem

It is easy to demonstrate that Equation 11.27 does not depend on the area of the double layer source. This is
illustrated by the following examples.

If we make the area of the double layer K times larger, the current /; through the galvanometer in case 1 is
now (by the application of superposition) K times larger - that is, K/;. In case 2, the electromotive force V; in the
galvanometer wire remains the same, because it represents the (unchanged) voltage over the double layer source in
case 1. Therefore, it still produces the same current density in the source area. But because the source area is now K
times larger, the total current through it is also K times larger - that is, Ki,. Consequently, Equation 11.27 becomes

kI, K
v, Vg

(11.27A)

and dividing both sides by K returns it to the expression arising from the original area. (In the above one
should keep in mind that the original area 4 and K4 are assumed to be very small so that i, and V4 can be
considered uniform.)

11.6.4 Lead Field Theory: the Historical Approach

In this section we derive the basic equation of the lead field from the original formulation of Helmholtz (expressed
by Equation 11.27) based on a description of current double layer source and lead voltage. As stated before,
Helmbholtz described the source as a voltage double layer element Vg, whose effect is evaluated by a measured lead
current /1. Alternatively, as is done presently, the source may be described as a current dipole layer element J
whereas the signal is the lead voltage /7 produced by it. We can directly obtain these expressions from those of
Helmholtz by application of the principle of duality. The result, illustrated in Figure 11.21, is discussed below..
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Fig. 11.21. Derivation of the equation for lead field theory.

Since Helmholtz's theorem applies to a discrete source, we make the following assumptions:

1. The lateral extent of the voltage double layer element V; is differential - that is, As.

The separation of the poles of the corresponding dipole element J'As is Ad, where J' is an applied
current density so that .7'Ad has the dimensions of a double layer source.

The conductivity at the source point is G.

4. The resistance of the galvanometer circuit between the measurement points equals R.

(98]

In case 1 and case 2 we may further evaluate the following expressions. For case 1:

1. Instead of the current /; measured by the galvanometer, we can examine the related lead voltage
VL = R, or Iy = Vi/R. (To prevent the galvanometer from affecting the volume conductor
currents and voltages in a real situation, R —coshould be chosen, but this choice does not affect
the validity of this expression.) _

2. Instead of reference to a voltage source V4, we now emphasize the concomitant current source J!
= V4o/Ad (Equation 11.2), where by rearranging we have V4 = J'Ad/c.

For case 2:
1. Instead of examining the reciprocal current density i; at the (removed) source point we can

evaluate the related lead field current density .71 = i;/As. These are connected by i, = As - J 1. The
dot product is required here because the current i, is the component of the reciprocal current
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flowing through the source area in the direction of the source J'. This can also be written
ip=AsJy - JYJ.

2. The required voltage source Vj in the circuit connected to the conductor can be achieved if we use
a reciprocal current source /; = V4/R, since then we have V3 = LR.

Substituting these equivalencies into the equation of Helmholtz, namely Equation 11.27, we obtain:

- It
V_I. ﬂSLJ?LI =
R _ |J | (11.28)
Find LR
F

where the left-hand side of the Equation 11.28 denotes case 1 and the right-hand side case 2 in the
Helmholtz procedure, respectively. Solving for the lead voltage V. in Equation 11.28, we obtain

V= TpaJ hs Ad (11.29)

11
o

where As Ad = Av, which is the volume element of the source. (In the limit, Av —dv.) By extending
Equation 11.29 throughout all source elements, and choosing the reciprocal current to be a unit current I,
=1 A, we may write:

1

Vig = IE:FLEJ!@ (11.30)

where Jig denotes an electric lead field due to unit reciprocal current. Note that although 7' was
originally defined as a current density, it may also be interpreted as a volume dipole density, as is clear in
Equation 11.30 and by their similar dimensions. Equation 11.30 is the most important equation in the lead
field theory, as it describes the lead voltage (the electric signal in a lead) produced by an arbitrary volume
source described by J'(x,y,z). It may be stated in words as follows:

To determine the lead voltage produced by a volume source, we first generate the lead field in the
volume conductor by feeding a unit (reciprocal) current to the lead. Every element of the volume source
contributes to the lead voltage a component equal to the scalar product of the lead field current density
and the volume source element divided by the conductivity.

If the volume conductor is homogeneous throughout the source region, we may move the
coefficient 1/c outside the integral and write:

Vig = éf Tigd 'dv (11.31)

According to Equation 11.31, the lead field has an important property: it equals the lead sensitivity
distribution. This means that at each point of the volume conductor, the absolute value of the lead field
current density equals to the magnitude of the lead sensitivity, and the direction of the lead field current
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equals the direction of the lead sensitivity. It should be noted that the lead field fully takes into account
the effect of the volume conductor boundary and internal inhomogeneities; hence these have an effect on
the form of the lead field. (The concept of secondary sources is contained within lead field theory through
the effect of the inhomogeneities on the form of the lead field.)

Lead field theory is a very powerful tool in bioelectromagnetism. It ties together the sensitivity
distribution of the measurement of bioelectric sources, distribution of stimulation energy, and sensitivity
distribution of impedance measurements, as is explained later. In general, if the lead and the volume
conductor are known, the distribution of the lead sensitivity may be determined, based upon lead field
theory. On the other hand, if the source and the volume conductor are known, the distribution of the
actual field may be determined directly without using the lead field concept. All this holds for
corresponding biomagnetic phenomena as well.

11.6.5 Field-Theoretic Proof of the Reciprocity Theorem

A brief explanation of Helmholtz's reciprocity theorem was given in Section 11.6.3, without offering a
mathematical proof. That explanation was based on the ideas of the original publication of Helmholtz (1853). The
field-theoretic proof of the reciprocity theorem as described by Plonsey (1963) is presented below.

Proof of the Reciprocity Theorem

Consider an arbitrary volume v bounded by the surface S and having a conductivity ¢ (which may be a function of
position). If @, and @, are any two scalar fields in v, the following vector identities must be satisfied:

R CD1 (Cll"._"'rq)z) = @1 R (01'-.?@2) + O'.l'l._l'qu)l' ?q)z (1132)

Vo0, 0V D) =0,V (oW D) + 0V D, VD,

If we subtract the second equation from the first one, integrate term by term over the volume v, and use
the divergence theorem, we obtain

[ ©1(67®2)edS — [ D1 (6VE)1dS = [ @ Ta(oT D)~ [ @y Ve(aV D ndy (4 3,
& o

Since V@, - V@, = ¥V, - VP, , these terms cancel out in deriving Equation 11.33 from 11.32. The
derivation of Equation 11.33 is well known in the physical sciences; it is one of a number of forms of
Green's theorem.

Now we assume that @, is the scalar potential in volume v due to sources within it specified by the
equation

r=-%J (11.34)

(Thus Ir is a flow source, as defined earlier in Equation 8.35.) We assume further that @, is the scalar
potential produced solely by current caused to cross the surface S with a current density J [A/m?]. Usually
we assume that J flows from conducting electrodes of high conductivity compared with o, so that the
direction of J is normal to the bounding surface. In this case J can be specified as a scalar corresponding
to the flow into v. (The scalar potential @, is later identified as the reciprocal electric scalar potential due
to the reciprocal current /, fed to the lead.) Since the current J is solenoidal, it satisfies
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c_FJ.:iS =0 (11.35)

The scalar fields @, and @, satisfy the following equations:

V. (0VD,) =- I (11.36)

since /r is a source of @; and

oV D, dS =JdS (11.37)

since the field ®, is established by the applied current J.

Since -6%®, carries the direction of the current (= J| ) and d5 is the outward surface normal,
Equation 11.37 shows that for our chosen signs J is positive for an inflow of current. No current due to
the source /r crosses the boundary surface (since in this case it is totally insulating), and hence

VO, dS =0 (11.38)

For the source J at the surface, the current must be solenoidal everywhere in v; hence:

V. (0¥ ®,)=0 (11.39)

We may rewrite Equation 11.33 by substituting Equations 11.38 and 11.37 into its left-hand side, and
Equations 11.38 and 11.36 into its right-hand side, obtaining

j Oy JdS =j O (11.40)
i

¥

which is the desired form of the reciprocity theorem.

The Reciprocity Theorem of Helmholtz

The reciprocity theorem of Helmholtz can be derived from Equation 11.40 in the following way. Consider that @,

(the reciprocal electric scalar potential) arises from a particular distribution J, where an inflow of a unit

(reciprocal) current is concentrated at point 7y, on the surface and an outflow of a unit (reciprocal) current at point 7

. on the surface, where r, and », are position vectors shown in Figure 11.22. Note that this is opposite to the

current flow direction given in Plonsey (1963). (With this sign notation, current dipoles in the direction of the lead

field current produce a positive signal in the lead, as will be seen later in Equation 11.50 (Malmivuo, 1976).)
The above can be expressed mathematically:

J=8(Fy-F)-8(Fa-F) (11.41)

where &, is a two-dimensional unit Dirac delta function on the bounding surface, and hence the
magnitude of both inflow and outflow is unity.
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Consider I to consist of a point source of current /; at #; and a point sink of equal magnitude at 7,
where 7, and 7, are the position vectors shown in Figure 11.22. Now /r can be written:

le=h[&(F1-7)-8(F2- F)] (11.42)

where &y i a three-dimensional Dirac delta function.
Substituting Equations 11.41 and 11.42 into Equation 11.40, we obtain

D)= P1irp) = Ip[Palry) - D2 ()] (11.43)

If we choose j to be unity, then this equation shows that the voltage between two arbitrary surface points
a and b due to a unit current supplied internally between points 1 and 2 equals the voltage between these
same points 2 and 1 due to a unit current applied externally (reciprocally) between points a and b. This is
essentially the reciprocity theorem of Helmholtz.

z
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X AN sink
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Fig. 11.22. Geometry for deriving the reciprocity theorem.

Deriving the Equations for Lead Field

The value of @, () can be specified in terms of the field at 7, by means of a Taylor series expansion:

Dy (F1) =Dy (7o) + WDy (Fr-Fy) +... (11.44)

Note that since the field @, is established by currents introduced at the surface into a source-free region, it
is well behaved internally and a Taylor series can always be generated. If we let (7, - 7, ) approach zero
and the current /y approach infinity, such that their product remains constant, then a dipole moment of
Io(F1 - 7o) = #¢ is created. Under these conditions the higher-order terms in Equation 11.44 can be
neglected, and we obtain

302 forrds: BioLabor Biofizikai és Laboratériumi Szolg. Kft. www.biolabor.hu



/o[(Dz(Fz) - (DZ(-Fl)] =- /o?q)z ' (-Fl - JFz) =- 1\_""@2' Eo (11-45)

Denoting the voltage between the points a and b as

Vie= cDl(-Fa) - ch(-Fb) (11-46)

and substituting Equations 11.45 and 11.46 into Equation 11.43, we obtain

Vie=-V0,- 2, (11.47)

Note that -% @, corresponds precisely to a description of the sensitivity distribution associated with
this particular lead, and is in fact the lead vector (field). Since no assumption has been made concerning
the volume conductor, we have found a powerful method for quantitatively evaluating lead vector fields
of arbitrary leads on arbitrary shaped inhomogeneous volume conductors.

The actual bioelectric sources may be characterized as a volume distribution ' with dimensions of
current dipole moment per unit volume. Equation 11.47 may be generalized to the case of such a volume
distribution of current dipoles with a dipole moment density of /' to obtain

Vig == [ 7y dv

¥

(11.48)

The quantity @, was earlier defined as the reciprocal electric potential field in the volume conductor
due to unit reciprocal current flow in the pickup leads a and b and is designated in the following as ®pg.
Plonsey (1963) has termed this potential field as the lead field in his field-theoretic proof of the
reciprocity theorem. In this text, however, the term "lead field" denotes the current density field due to
reciprocal application of current in the lead. They are related, of course, by Jig = -0V ®rg.

Using the vector identity ¥ (®rgJ' ) = Vg - J' + OV - J' and the divergence theorem, we
obtain from Equation 11.48

VLE = —.r':I:'L ljlld§+I¢'LE?'j!fiv (1149)
o

¥

Because the impressed current sources are totally contained within S, the integrand is zero everywhere on
S, and the first term on the right-hand side of Equation 11.49 is zero; thus we obtain

VLE = I(I:'LE?"?!&P

¥

(11.50)

The quantity -¥ - J' is the strength of the impressed current source and is called the flow (or flux) source
Ir as defined in Equation 8.35. Thus Equation 11.50 can be expressed as
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Vig = —I Dpgipdv (11.51)

v

McFee and Johnston (1953) designated the vector field J1g=-6¥® =o& 5 the lead field. Here the
symbol Erg denotes the reciprocal electric field due to unit reciprocal current, and the conductivity of the
volume conductor. Using this formulation, we may rewrite Equation 11.48 as:

1

Vig = J-EJLE"F!EV (11.52)

¥

where Jg is the lead field arising from unit reciprocal current (the reader should review the definition of
J in Equation 11.41). But Equation 11.52 corresponds precisely to Equation 11.30 (assuming /. = 1 [A]).
Consequently, Equation 11.52 confirms Equation 11.30, which is the equation characterizing lead field
theory, introduced earlier.

11.6.6 Summary of the Lead Field Theory Equations

In this section we summarize the equations of the lead field theory for electric leads. (Equations for magnetic leads
are given in the next chapter.) We consider the situation in Figure 11.23, where two disklike electrodes in a volume
conductor form the bipolar electric lead.

To determine the lead field, a unit reciprocal current /, is fed to the lead. It generates a reciprocal electric
potential field @i in the volume conductor (this potential field was defined as @, in Section 11.6.5 in the proof of
the reciprocity theorem). If the electrodes are parallel and their lateral dimensions are large compared to their
separation, @ is uniform in the central region. The negative gradient of this electric potential field @ is the
reciprocal electric field, B

Ee=-VO; (11.53)

The reciprocal electric field is related to the reciprocal current field by the conductivity of the
medium:

I.?LE = O-ELE (1154)

This reciprocal current field J 1 is defined as the lead field.

Now, when we know the lead field .,_TLE, we can remove the reciprocal current generator (of unit
current) from the lead. The electric signal Vig in the lead due to current sources J' in the volume
conductor is obtained from the equation

1

Vig = I;:&EJ!@V (11.30)

304 forrds: BioLabor Biofizikai és Laboratériumi Szolg. Kft. www.biolabor.hu



If the volume conductor is homogeneous, the conductivity ¢ may be taken in front of the integral
operation, and we obtain

Vig = él TigJ v (11.31)

Section 11.6.1 introduced the concept of isosensitivity surface and its special case half-sensitivity
surface which bounds a half-sensitivity volume. The isosensitivity surfaces, including the half-sensitivity
surface, are surfaces where the lead field current density J g is constant. In a homogeneous region of a
volume conductor, where ¢ is constant, the isosensitivity surfaces are, of course, surfaces where the
reciprocal electric field J1g is constant. In certain cases the isosensitivity surfaces coincide with the
isopotential surfaces. These cases include those, where all isopotential surfaces are parallel planes,
concentric cylinders, or concentric spheres. Then the surfaces where the electric field is constant (i.e.
where two adjoining isopotential surfaces are separated by a constant distance) have the same form as
well. But in a general case, where the isopotential surfaces are irregular so that two adjacent surfaces are
not a constant distance apart the surfaces of constant electric field do not have the same form.

As summarized in Figure 11.23, as a consequence of the reciprocal energization of an electric lead,
the following three fields are created in the volume conductor: electric potential field @y g (illustrated with
isopotential surfaces), electric field X (illustrated with field lines) and current field J (illustrated with
current flow lines and called the lead field). In addition to these three fields we defined a fourth field of
surfaces (or lines): the field of isosensitivity surfaces. When the conductivity is isotropic, the electric field
lines coincide with the current flow lines. In a symmetric case where all isopotential surfaces are parallel
planes, concentric cylinders, or concentric spheres, the isopotential surfaces and the isosensitivity surfaces
coincide.

In an ideal lead field for detecting the equivalent dipole moment of a volume source (see the
following section) the isopotential surfaces are parallel planes. To achieve this situation, the volume
conductor must also be homogeneous. Thus, in such a case from the aforementioned four fields, the
electric field lines coincide with the lead field flow lines and the isopotential surfaces coincide with the
isosensitivity surfaces..
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Fig. 11.23. Basic form of a bipolar electric lead, where

I, =unit reciprocal current;

@ =reciprocal electric scalar potential field;

ELE = reciprocal electric field;

J ¢ = lead field:

Vi =voltage in the lead due to the volume source J'in the volume conductor; and

o = conductivity of the medium.
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11.6.7 Ideal Lead Field of a Lead Detecting the Equivalent Electric Dipole of a
Volume Source

PRECONDITIONS:
SOURCE: Volume source
CONDUCTOR: Infinite, homogeneous

In this section we determine the desired form of the lead field of a detector that measures the
equivalent (resultant) electric dipole moment of a distributed volume source located in an infinite
homogeneous volume conductor.

As discussed in Section 7.3.2, a dipole in a fixed location has three independent variables, the
magnitudes of the x-, y-, and z-components. These can be measured with either unipolar or bipolar
electrodes locating at the coordinate axes. The vectorial sum of these measurements is the dipole moment
of the dipole.

Because a volume source is formed from a distribution of dipole elements, it follows from the
principle of superposition that the dipole moment of a volume source equals to the sum of the dipole
moments of its dipole elements. This can be determined by measuring the x-, y-, and z-components of all
the elementary dipoles and their sums are the x-, y-, and z-components of the equivalent dipole moment of
the volume source, respectively. To introduce the important equations we show this fact also in
mathematical form.

The equivalent electric dipole moment of a volume source may be evaluated from its flow source

description. It was shown in Equation 8.35 (Section 8.5) that the flow source density /r is defined by the
impressed current density (Plonsey, 1971) as

==V - J' (8.35)

The resultant (electric) dipole moment of such a source can be shown to be

p=[Fipav (11.55)

¥

This dipole moment has three components. Because 7= xi + y.J + zk, these three components may be
written as:

r= I xi_fpdv+.|-y}fpdv+.|-zﬁ?fpdv (11.56)

¥ ¥ ¥

We consider the x-component of the dipole moment. Noting Equation 8.35 and using the vector
identity ¥+ (xJ") =x¥ - J'+ 7' ¥x, we obtain
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Py = [alpdv=—[ VT dv=—[Vu(xTdv+ [T Vxdv (11.57)
¥ ¥

¥ ¥

Using the divergence theorem, we may rewrite the first term on the right-hand side of Equation 11.57 as

—J'v-(ﬁi).:fv = —J' T dS =0

¥ 3

(11.58)

Since there can be_no impressed current density on the surface, this term vanishes. Therefore, and because
Vx =1 (3x/8x)+ J(By/3y) + k (3z/3z) = J', we obtain for the x-component of the dipole moment

P, = Iji-‘?m’v: J..,Ti-?.:fv: IJ; (11.59)
v v ¥

In fact, recalling the dual identity of J' as a dipole moment per unit volume, we can write Equation 11.59
directly.

Equation 11.59 can be described as follows: one component of the equivalent electric dipole
(moment) of a volume source may be evaluated from the sum of corresponding components of the
distributed dipole elements of the volume source independent of their location. A comparison of Equation
11.59 with Equation 11.49 identifies @ with —x. Consequently, we see that this summation is, in fact,
accomplished with a lead system with the following properties (see Figure 11.24):

1. The lead field current density is given by Ji = ¥x = i (so that it is everywhere in the x direction
only).

2. The lead field current density is uniform throughout the source area.

3. Three such identical, mutually perpendicular lead fields form the three orthogonal components of
a complete lead system.
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Fig. 11.24. Ideal lead field (sensitivity distribution) for detecting the electric dipole moment of a
volume source. Each component is uniform in one direction throughout the source region, and the
components are mutually orthogonal.

(A) Lead field current density vector presentation.

(B) Lead field current flow line presentation.

This is the physiological meaning of the measurement of the electric dipole. (See the text
for details.)

Physiological Meaning of Electric Dipole

The sensitivity distribution (i.e., the lead field), illustrated in Figure 11.24, is the physiological meaning of the
measurement of the (equivalent) electric dipole of a volume source.

The concept "physiological meaning" can be explained as follows: When considering the forward problem,
the lead field illustrates what is the contribution (effect) of each active cell on the signals of the lead system. When
one is considering the inverse problem, the lead field illustrates similarly the most probable distribution and
orientation of active cells when a signal is detected in a lead..11.6.8 Application of Lead Field Theory to the
Einthoven Limb Leads

PRECONDITIONS:
SOURCE: Volume source
CONDUCTOR: Infinite, homogeneous

To build a bridge between lead field and lead vector and to clarify the result of Equation 11.59 illustrated
in Figure 11.24, we apply lead field theory to the Einthoven limb leads.

Previously, in Section 11.4.3, the Einthoven triangle was discussed as an application of the lead
vector concept. The volume source of the heart was modeled with a (two-dimensional) dipole in the
frontal plane. It was shown that the signal in each limb lead Vy, Vy, and Vi is proportional to the
projections of the equivalent dipole on the corresponding lead vectors.

Instead of modeling the volume source of the heart with the resultant of its dipole elements, we
could have determined the contribution of each dipole element to the limb leads and summed up these
contributions. In this procedure one can use the lead field theory to illustrate the lead fields - that is, the
sensitivities of the limb leads. The idealized lead fields of the limb leads are uniform in the directions of
the edges of the Einthoven triangle. Figure 11.25 illustrates the sensitivity distribution of the (ideal)
Einthoven limb leads within the area of the heart.

This is the physiological meaning of the measurement of the Einthoven limb leads (see the previous
section).
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Fig. 11.25. The ideal lead field (sensitivity distribution) of Einthoven limb leads Vi, ¥y, and V.
This is the physiological meaning of the measurement of the limb leads.

11.6.9 Synthesization of the Ideal Lead Field for the Detection of the Electric
Dipole Moment of a Volume Source

Synthesization of the Ideal Lead Fields in Infinite, Homogeneous Volume Conductors

PRECONDITIONS:
SOURCE: Volume source
CONDUCTOR: Infinite, homogeneous

We begin the discussion on synthesis of ideal lead fields for detecting the equivalent dipole moment of a
volume source by discussing the properties of unipolar and bipolar leads in infinite, homogeneous volume
conductors.

If the dimensions of a distributed volume source are small in relation to the distance to the point of
observation, we can consider it to be a lumped (discrete) dipole. The detection of such an electric dipole
is possible to accomplish through unipolar measurements on each coordinate axis, as illustrated on the left
hand side of Figure 11.26A. If the dimensions of the distributed volume source are large in relation to the
measurement distance, the lead field of a unipolar measurement is not directed in the desired direction in
different areas of the volume source and the magnitude of the sensitivity is larger in the areas closer to the
electrode than farther away. This is illustrated on the right hand side of Figure 11.26A.

The quality of the lead field both in its direction and its magnitude is considerably improved when
using a bipolar lead, where the electrodes are located symmetrically on both sides of the volume source,
as illustrated in Figure 11.26B. (Note also that in the bipolar measurement the difference in potential
between the electrodes is twice the unipolar potential relative to the center.)

The quality of the lead field of a bipolar lead in measuring volume sources with large dimensions is

further increased by using large electrodes, whose dimensions are comparable to the source dimensions.
This is illustrated in Figure 11.26C.
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Fig. 11.26. Properties of unipolar and bipolar leads in detecting the equivalent electric dipole
moment of a volume source.

(A) If the dimensions of the volume source are small compared to the measurement distance
the simplest method is to use point electrodes and unipolar leads on the coordinate axes.

(B) For volume sources with large dimensions the quality of the lead field is considerably
improved with the application of bipolar leads.

(C) Increasing the size of the electrodes further improves the quality of the leads.

Synthesization of the Ideal Lead Fields in Finite, Homogeneous Volume Conductors

PRECONDITIONS:
SOURCE: Volume source
CONDUCTOR: Finite, homogeneous

Using large electrodes is in practice impossible. In the following we describe a method to design a

lead to detect the equivalent electric dipole moment of a volume source in a finite, homogeneous volume
conductor of arbitrary shape (Brody, 1957).

According to Section 11.6.7, such a lead, when energized reciprocally, produces three orthogonal,

uniform, and homogeneous lead fields. We consider the construction of one of them. This may be done
according to the following steps:

1.

2.

Suppose that the volume conductor has the arbitrary shape shown in Figure 11.27A and that our
purpose is to synthesize an ideal lead field in the y direction within this region.

We extend the volume conductor in the direction of the y-axis in both directions so that it forms a
cylinder limited by two planes in the zx direction and having the cross section of the original
volume conductor (Figure 11.27B).

Then we plate the end planes of the cylinder with a well-conducting material. If electrodes are
connected to these plates and a reciprocal current is fed to them, an ideal lead field is created in
the volume conductor (Figure 11.27B).

Thereafter the extension of the volume conductor is slit as described graphically in Figure 11.27C,
generating isolated "fibers." These cuts do not modify the form of the lead field because they are
made along the flow lines which are nowhere intersected, as is clear in Figure 11.27C.

Each of the volume conductor "fibers" may now be replaced with discrete resistances of equal
resistive value, as illustrated in Figure 11.27D.
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The above procedure is repeated in the direction of the z- and x-axes. Corresponding to each
discrete resistor, an electrode must be placed on the volume conductor. If the number of electrodes is
sufficiently large, the ideal lead field (requiring an infinite number of electrodes) will be well
approximated. Since one wishes to keep the number of electrodes to a minimum, one must explore the
acceptability of reduced numbers of electrodes, make the spacing of electrodes unequal to strengthen
accuracy only in the heart region, and use the same electrode for more than a single component lead.

Note once again, that this method may be applied to a finite homogeneous volume conductor having
an arbitrary shape. In general, the effect of internal inhomogeneities cannot be corrected with electrodes
located on the surface of the conductor with the method described above.

313 forrds: BioLabor Biofizikai és Laboratériumi Szolg. Kft. www.biolabor.hu



C@ YIY Y| Y(Y Y Y YY
YIY Y Y(YYY Y YY

h‘####'ﬂ'##}

YIY Y|IY Y Y Y Y Y

I

Fig. 11.27. Synthesizing an ideal lead field within a finite, homogeneous volume conductor.
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11.6.10 Special Properties of Electric Lead Fields

Two special properties of the lead fields are summarized as follows:

1. If the volume conductor is cut or an inhomogeneity boundary is inserted along a lead field current
flow line, the form of the lead field does not change. Only the intensity of the field changes in
relation to the conductivity.

2. The reciprocity theorem may be applied to the reciprocal situation. This means that it is possible
in electrolytic tank models to feed a "reciprocally reciprocal" current to the dipole in the conductor
and to measure the signal from the lead and interpret the result as having been obtained by feeding
the reciprocal current to the lead and measuring the signal from the dipole.

The latter is easily proved by imagining that the lead field is a result of the mapping of the behavior
of the lead vector as a function of the source location, as discussed in Section 11.6.2. This mapping is
done by feeding unit currents in each coordinate direction at each point of the source area and by
measuring the corresponding voltages at the lead, as explained in Section 11.4.1.

The benefit of this "reciprocally reciprocal" arrangement is that for technical reasons, the signal-to-
noise ratio of the measurement may be improved while still having the advantage of the interpretations
associated with the lead field current distribution.

The special properties of electric lead fields are discussed in more detail in connection with
magnetic lead fields.

11.6.11 Relationship Between the Image Surface and the Lead Field

In this section, the relationship between the image surface and the lead field is described with the aid of Table 11.3
and Figure 11.28.

The source in the concept of the image surface is a dipole. This can be a discrete dipole (at a point), or it can
be a dipole element of a distributed volume source. In the lead field concept, the source may be a distributed
volume source or a discrete dipole. The conductor in both cases was previously considered to be finite (and
inhomogeneous). However, the theory holds for infinite volume conductors as well.

Source location in the image surface was fixed and the measurement points were variable and forming a
continuum. In characterizing the lead field, we note that the situation is the opposite: The measurement points are
fixed while the source point varies (continuously). This means that in the image surface the lead vectors are
mapped as a function of the measurement point, but in the lead field the mapping is a function of the source point.
The image surface takes into account field points lying on a surface, whereas in the lead field the source point may
lie within a three-dimensional volume.

Geometrically, in the image surface concept, the ends of the lead vectors form the image surface. In the lead
field concept, the field of lead vectors establish the lead field.

The equations for the application of the lead vector and image surface (Equation 11.16) and the lead field
(Equations 11.30 and 11.31) are, in principle, of the same form. The main difference is that the equation for the
lead field is in integral form. This comes from the fact that it is applied to a volume source.

An important consequence of the reciprocity theorem of Helmholtz is that the lead field is identical to the
current field resulting from feeding the (unit) reciprocal current to the lead.
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Table 11.3. Relationship between the image surface and the lead field

Image surface Lead field

Preconditions

Source Dipole Zin a fixed location Volume source (dipole elements g
distributed in a volume)

Conductor Infinite or finite Infinite or finite
Theory

Basic principle Measurement points P vary, Measurement points P fixed
source point Q fixed, source point Q varies,
see Figure 11.28A see Figure 11.28B

Procedure Lead vectors are mapped as a Lead vectors are mapped as a
function ofthe measurement function of the source point;
point; their end points form these lead vectors form the
the image surface lead field

Geometric See Figure 11.28C See Figure 11.28D and Figure 11.28E

presentation

Application of A lead, with a desired sensitivity The contribution of the source to the

the theory in a certain direction, may be lead is evaluated from the equation
found from a lead vector in

image space in that direction

1 .
VLE =.|-—..JTLEI..J?!|:fV
1-?I‘_'.F
vi=c- F

Note: (1) There is similarity between the variables: Z¢3J ¢, Z<3J'

(2) It follows from the reciprocity theorem that J'is the same as the current density field
in the volume conductor due to feeding the reciprocal current /. of 1 A to the lead.
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Fig. 11.28. Relationship between image surface and lead field.

11.7 GABOR-NELSON THEOREM
PRECONDITIONS:
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SOURCE: Moving (equivalent) dipole moment of a volume source (position, direction, and magnitude)

CONDUCTOR: Finite, homogeneous
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11.7.1 Determination of the Dipole Moment

In 1954, Dennis Gabor and Clifford V. Nelson presented a mathematical method that can be used in solving for the
equivalent dipole of a volume source in a homogeneous volume conductor (Gabor and Nelson, 1954). The method,
which also gives the location of the dipole, is based on potential measurements at the surface of the volume
conductor and on the knowledge of the volume conductor's geometry. The details are provided in this section.

As described in Section 8.5 (Equation 8.35), the flow (flux) source density /¢ of a distribution of impressed
current density Jiis

lp==% - J (8.35)

and the resulting (electric) dipole moment of such a system is evaluated from the definition (Equation
11.55)

p=[Fipav (11.55)

¥
where # =the radius vector

dv = the volume element

The dipole moment has three components, as was illustrated by Equation 11.56. We now examine
the x-component of this dipole moment. We develop it in the following way: The explanation for each
step is given on the right-hand side of the column.

p. = _[fo dv from Equation 11.57
= —_[ PATIN AP because -/ = ¥- J' (Equation 8.35)
- —ij‘fe"-?@dv from Equation 7.3 we have ¥+ J' = V- 6¥® ; for a uniform

conducting medium this reduces to ¥- J' = 6% - VO

— JI TV By Ve (xVO)=xV - VO + VWx - VO is a vector identity. Integrating
each term through the entire volume, and applying Gauss's
theorem to the first integral, we get

cﬁﬁ@-a@ - jx‘?-‘?@dv+ I‘Fx-‘?@dv

Since the boundary is
insulated,

—| VoV v = | VoW o d
VO d5=0.Thus -[x v .[x v
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— cr_[@dyciz because the volume integral may be transformed to a surface
integral by integrating with respect to x

— Jj@dgx (11.61) because the surface integral may be written in a more
convenient form by using a vectorial surface element dx whose
absolute value is dS = dy dz, and which is directed outward and
normal to the surface defined by dy dz.

Summing Equation 11.61 and similar expressions for py and p, and replacing the potential ® with
voltage V, we finally obtain the vector equation

P= G'_[mgf (11.62)
5

which expresses the resultant dipole moment of a volume source in an arbitrary volume conductor.

We now explain in detail the meaning of Equation 11.62, as illustrated in Figure 11.29.

Figure 11.29A illustrates the homogeneous volume conductor including the volume source. In the
illustration the Gabor-Nelson theorem is discussed in two dimensions. The equivalent dipole moment of
the volume source is Z. The vectorial surface element d5 is a vector attached to the surface element. It is
directed outward and normal to the surface element, and its absolute value equals the area of the surface
element. For clarity the volume conductor is divided into 12 surface elements, S; through Sj>. (When
applying Equation 11.62, of course, one assumes that the number of surface elements is infinite.) A vector
ds, through d5, is attached to each surface element. The volume source produces a potential, @,
through @,,, at each surface element.

It is obvious that because the surface is closed, the sum of the vectorial surface elements is equal to
zero; that is, £d.5; = 0 (Figure 11.29B).

If we multiply each vectorial surface element d; by the corresponding potential ®@; (or actually
with the voltage V; measured at each surface element in relation to an indifferent reference), the sum of
these products, XVid', is no longer zero. It is clear that when one is considering the surface potential due
to the dipole Zalong the surface elements of increasing index, one finds that it is at its maximum at the
surface elements S; and S,. Then it decreases and reaches the value zero somewhere between the surface
elements S; and Ss. Thereafter the surface potential turns to negative polarity and reaches its maximum at
the surface element S7. Thereafter the (negative) surface potential decreases to zero and increases again to
the positive maximum in the area of S;. Therefore, the sum XVid5; is not zero; and according to the
Equation 11.62, if the number of the surface elements is infinite, one obtains . For clarity, the length of
#is shown longer in Figure 11.29C than in Figure 11.29A..
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Isopotential surfaces
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Fig. 11.29. Illustration of the Gabor-Nelson equation for evaluating the resultant (equivalent)
dipole of a volume distribution lying in a bounded homogeneous volume conductor. The integral
is shown approximated by discretizing the surface into 12 elements. The calculation of the integral
is explained in detail in the text.

11.7.2 The Location of the Equivalent Dipole

Next we describe the procedure for finding the position of the resultant dipole. If we actually had an equal point
source and sink, +/ and -/, located at points

X+%ﬂx; Y¥-Llax

L
2
the second moment of the source distribution is in the x direction and given by

[ e Fav= I[(X+ Lax)? —(x —ljﬁx)z] = 2 X(1Ax) (11.63)

where upper-case X denotes the x-coordinate of the dipole location and lower-case x is the variable in this
coordinate.

In the limit Ax —0 and /Ax —px we obtain
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Xp, = —H T gy (11.64)

We now transform this second moment integral, following the same steps as with the first moment,
namely

N
Xp, = L[ F*7:T'av

=—gjx2v-?®dv

(11.65)
= 2 [V(x* )V Tdv

= Jlx%dv

ax

Integrating by parts with respect to x and again replacing the potential @ with the measured voltage
gives

Xy = o | xVaS, — o [Viv (11.66)

In a similar way, we obtain equations for Yp, and Zp.. It is obvious that we cannot determine any of
these by surface measurements alone because the second term in each expression requires a volume
integral of the potential V. However, in the same way as one obtains Equation 11.66, one can show that

Xp},+}’px =Ixjffpcfv=—l ;';y"?'-fidv (11.67)

Two similar equations arise by cyclic permutation of the coordinates. We can also derive three new
equations of the type

Kpy+Yp, = cer(xcfS}, +ydS,) (11.68)

in the same manner as Equations 11.61 and 11.66 were derived. We can now eliminate the unknown
volume integral of V' from the equations of the type 11.66, and, together with the three equations of the
type 11.68, we are left with the five equations for the three quantities X, Y, and Z. Any three of these five
equations can be used for finding the location of the dipole, and the other two for checking how well the
assumption of one dipole accounts for the observation. One can also use the method of least squares to
obtain the best fit.

321 forrds: BioLabor Biofizikai és Laboratériumi Szolg. Kft. www.biolabor.hu



11.8 SUMMARY OF THE THEORETICAL METHODS FOR ANALYZING VOLUME
SOURCES AND VOLUME CONDUCTORS

We have discussed six different theoretical methods for analyzing volume sources and volume conductors. Two of
them are used for solving the forward problem, and the other four for solving the inverse problem. These methods

are:

1. For the forward problem:
Solid angle theorem
Miller-Geselowitz model

2. For the inverse problem:

Lead vector

Image surface

Lead field
Gabor-Nelson theorem

In various cases we had the following sources:

Double layer

Distributed dipole

Dipole (in a fixed location)
Moving dipole

Dipole moment of a volume source
Multiple dipole

Multipole

These sources have been located in volume conductors that were:

Infinite, homogeneous

(Infinite, inhomogeneous, not discussed)
Finite, homogeneous

Finite, inhomogeneous

The application of each method is limited to certain source-conductor combinations, as expressed
in the sets of preconditions in connection with the discussion of each method. We summarize these
preconditions in Figure 11.30. The former one of these shows the application areas for the two methods
used in solving the forward problem, and the latter one for those used in solving the inverse problem.

Figure 11.30A is quite obvious. The preconditions of the two methods are shown by locating the
methods in the corresponding location in the source-conductor plane. The application area of the solid
angle theorem is shown to be both the infinite homogeneous volume conductor, as derived first by
Helmholtz, and the finite homogeneous and inhomogeneous conductors, where it can be extended with
the concept of secondary sources.

Figure 11.30B needs some clarification, and certainly some details of this figure could perhaps be
presented also in some other way.

The source for the lead vector and image surface methods is dipole. In Sections 11.4 and 11.5,
these methods were discussed, for simplicity, in connection with finite conductors. There is, however, no
theoretical reason, that would restrict their application only to finite conductors, but they are applicable to
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infinite conductors as well. Therefore, their application area is shown for both finite and infinite
conductors, but more light shaded in infinite conductors.

The same holds also for the lead field theory. Section 11.6.4 did not discuss the application of the
lead field theory for a multiple dipole or multipole source. The lead field theory may, however, be applied
also in connection with these sources. Therefore, they are included into the application area but with

lighter shading.

The application area of the Gabor-Nelson theorem is clear. It can be applied for solving the dipole
moment of a single dipole or a volume source in a finite homogeneous volume conductor. It also gives

the location of this dipole moment..

A FORWARD PROBLEM
4 COMDUCTOR ™
SOURCE INFINITE FINITE

HOMOG| IMHOR [HOhd O | IRHC

B INVERSE PROBLEM
4 COMDUCTOR M
SOURCE INFINITE FINITE

HOMOG | INHOM

HOMOS | INHOM

Double Dipole moment
layet of double layer
Distributed Moment of
dipole, _ a dipole in a
\%c:ellular basis g, fixed location
Dipale
- =olid angle thearem morment of
volume source
- Miller- Geselowitz model Dipale
morments of

multiple dipole

taments of
multipale

Location of
dipale=

{nwing dipole

A

[[I:I:[I]Im] Lead vector & image surface

- Lead field

- Gabaor-Melson theorem

Fig. 11.30. (A) The source-conductor combinations where the solid angle theorem and Miller-
Geselowitz model may be applied in solving the forward problem. (B) The source-conductor
combinations where the lead vector, image surface, and lead field methods as well as Gabor-

Nelson theorem may be applied in solving the inverse problem.
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Theory of Biomagnetic Measurements

12.1 BIOMAGNETIC FIELD

PRECONDITIONS:
SOURCE: Distribution of impressed current source elements J' (volume source)
CONDUCTOR: Finite, inhomogeneous

The current density ./ throughout a volume conductor gives rise to a magnetic field given by the following
relationship (Stratton, 1941; Jackson, 1975):

r

Az H = _[F x‘?(l] dv (12.01)
¥

where 7 is the distance from an external field point at which His evaluated to an element of volume dv
inside the body, Jdv is a source element, and is an operator with respect to the source coordinates.
Substituting Equation 7.2, which is repeated here,

J=-a¥Vo+T' (7.02)

into Equation 12.1 and dividing the inhomogeneous volume conductor into homogeneous regions v; with
conductivity 6;, we obtain

4EE:IF"><?(1J@—ZIcrj-‘?@x?(lev (12.02)
F . P
¥ J ¥y

If the vector identity ¥Wx® A= @ ¥xA+ ¥® x.Ais used, then the integrand of the last term in
Equation 12.2 can be written 6;% =[® % (1/r)] - ® ¥=¥(1/r). Since ¥=%¥ ® = 0 for any @, we may replace
the last term including its sign by

1
—Z I crj-‘?x@?(—J dv (12.03)

5 r
J vy

We now make use of the following vector identity (Stratton, 1941, p. 604):
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I?xtfdv :—jExdE (12.04)
¥

&

where the surface integral is taken over the surface S bounding the volume v of the volume integral. By
applying 12.4 to Equation 12.3, the last term in Equation 12.2, including its sign, can now be replaced by

1 _
> gj@v(;]xdsj (12.05)
Ry

Finally, applying this result to Equation 12.2 and denoting again the primed and double-primed regions of
conductivity to be inside and outside a boundary, respectively, and orienting dS; from the primed to
double-primed region, we obtain (note that each interface arises twice, once as the surface of v; and
secondly from surfaces of each neighboring region of v; )

75 =1 1 t ' 1 o
Az B (r= _[ J x‘?(;] v+ I (o) — Jj-}@‘?(;JXdSJ (12.06)
¥ 7 5y

This equation describes the magnetic field outside a finite volume conductor containing internal
'

(electric) volume sources J' and inhomogeneities (' i - o' ). It was first derived by David Geselowitz
(Geselowitz, 1970).

It is important to notice that the first term on the right-hand side of Equation 12.6, involving .7,
represents the contribution of the volume source, and the second term the effect of the boundaries and
inhomogeneities. The impressed source J' arises from cellular activity and hence has diagnostic value
whereas the second term can be considered a distortion due to the inhomogeneities of the volume
conductor. These very same sources were identified earlier when the electric field generated by them was
being evaluated (see Equation 7.10). (Just, as in the electric case, these terms are also referred to as
primary source and secondary source.)

Similarly, as discussed in connection with Equation 7.10, it is easy to recognize that if the volume
conductor is homogeneous, the differences (¢"; - 6'; ) in the second expression are zero, and it drops out.
Then the equation reduces to the equation of the magnetic field due to the distribution of a volume source
in a homogeneous volume conductor. This is introduced later as Equation 12.20. In the design of high-
quality biomagnetic instrumentation, the goal is to cancel the effect of the secondary sources to the extent
possible.

From an examination of Equation 12.6 one can conclude that the discontinuity in conductivity is
equivalent to a secondary surface source X, given by £; = (¢"; - ¢'; )®# where @ is the surface potential
on S;. Note that £ is the same secondary current source for electric fields (note Equation 7.10) as for
magnetic fields.
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12.2 NATURE OF THE BIOMAGNETIC SOURCES

Equation 12.6 shows that the physiological phenomenon that is the source of the biomagnetic signal is the electric
activity of the tissue J (described earlier). Thus, for instance, the source for the magnetocardiogram (MCG) or
magnetoencephalogram (MEG) is the electric activity of the cardiac muscle or nerve cells, respectively, as it is the
source of the electrocardiogram (ECG) and electroencephalogram (EEG). The theoretical difference between
biomagnetic and bioelectric signals is the difference in the sensitivity distribution of these measurements. The
sensitivity distribution (the form of the lead field) of electric measurements was discussed in detail in the previous
chapter. The sensitivity distribution of magnetic measurements is discussed in detail in this chapter. (The technical
distinctions in the electric and magnetic detectors introduce additional differences. These are briefly discussed later
in connection with magnetocardiography in Chapter 20.)

The difference between biomagnetic and bioelectric signals may be also seen from the form of their
mathematical equations. When comparing the Equations 12.6 and 7.10, one can note that the magnetic field arises
from the curl and the electric field from the divergence of the source. This distinction holds both for the first
component on the right-hand side of these equations arising from the distribution of impressed current, and for the
second component arising from the boundaries of the inhomogeneities of the volume source.

It is pointed out that in the design of magnetic leads one must keep in mind the electric origin of the
magnetic signal and the characteristic form of the sensitivity distribution of the magnetic measurement. If the lead
of a magnetic measurement is not carefully designed, it is possible that the sensitivity distribution of a magnetic
lead will be similar to that of another electric lead. In such a case the magnetic measurement does not provide any
new information about the source.

Please note that the biomagnetic signal discussed above is assumed not to arise from magnetic material
because such material does not exist in these tissues. There are special circumstances, however, where biomagnetic
fields are produced by magnetic materials - for example, in the case of the signal due to the magnetic material
contaminating the lungs of welders or the iron accumulating in the liver in certain diseases. Such fields are not
discussed in this textbook.

Biomagnetic fields have very low amplitude compared to the ambient noise fields and to the sensitivity of
the detectors. A summary of these fields is presented in Figure 12.1 (Malmivuo et al., 1987). The figure indicates
that it is possible to detect the MCG with induction coil magnetometers, albeit with a reasonably poor signal-to-
noise ratio. However, even the most sensitive induction coil magnetometer built for biomagnetic purposes (Estola
and Malmivuo, 1982) is not sensitive enough to detect the MEG for clinical use. Therefore, the Superconducting
QUantum Interference Device (SQUID) is the only instrument that is sensitive enough for high-quality biomagnetic
measurements. The instrumentation for measuring biomagnetic fields is not discussed further in this textbook. A
good overview of the instrumentation is published by Williamson et al. (1983)..
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Fig. 12.1. Magnetic signals produced by various sources.

Biomagnetic signals: MCG = magnetocardiogram, MMG = magnetomyogram, MEG =
magnetoencephalogram, MOG = magneto-oculogram

Noise fields: static field of the Earth, geomagnetic fluctuations, laboratory noise, line frequency noise,
radio frequency noise

Equivalent input noise: commercial flux-gate magnetometer, ring-core flux-gate (NASA), induction coil
magnetometer, SQUID-magnetometer.

Thermal noise fields: eddy current shield, the human body.

12.3 RECIPROCITY THEOREM FOR MAGNETIC FIELDS

PRECONDITIONS:
SOURCE: Distribution of impressed current source elements J' (volume source)
CONDUCTOR: Infinite, homogeneous; or finite, inhomogeneous with cylindrical symmetry
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12.3.1 The Form of the Magnetic Lead Field

Plonsey extended the application of the reciprocity theorem to the time-varying conditions that arise in biomagnetic
measurements (Plonsey, 1972). That development follows along lines similar to the proof of the reciprocity
theorem for electric fields and therefore need not be repeated here. Only the equations for the reciprocity theorem
for magnetic measurements are derived here. In this discussion subscript L denotes "lead," as in the previous
chapter, but we add a subscript M to denote "magnetic leads" due to reciprocal current of unit time derivative.

The current induced in a conductor depends on the rate of change of the magnetic flux that links the current
loop. In analogy to the electric field case (see Equations 11.30 and 11.52), the reciprocally energizing (time-
varying) current /; is normalized so that its time derivative is unity for all values of . The necessary equations for
the lead field theory for biomagnetic measurements can then be readily obtained from the corresponding equations
in electric measurements.

An elementary bipolar lead in magnetic measurements is a solenoid (coil) with a core and disklike terminals
of infinite permeability, as illustrated in Figure 12.2. If the coil is energized with a current, a magnetic field is set
up, which can be considered to result from magnetic charges (equal and opposite) at the terminals of the core.
These terminals are called magnodes (Baule and McFee, 1963). (The word "electrode” was introduced by Michael
Faraday (1834).) This elementary bipolar magnetic lead is equivalent to the elementary bipolar electric lead
illustrated in Figure 11.23.

When a reciprocal current /; is fed to the elementary magnetic lead, it produces in an infinite space of
uniform permeability a reciprocal magnetic scalar potential field @y of the same spatial behavior as the
reciprocal scalar electric potential field ®1g in an infinite medium of uniform conductivity arising from a
reciprocally energized electric lead, whose electrodes are located at sites corresponding to the magnodes. As noted
in Section 11.6.6, if the electrodes or magnodes are parallel and their dimensions are large compared to their
separation, both @, and @, are uniform in the central region..
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Fig. 12.2. Basic form of a bipolar magnetic lead, where
where [, =reciprocal current

Oy = reciprocal magnetic scalar potential field

Huw= reciprocal magnetic field

By = reciprocal magnetic induction field

_LM = reciprocal electric field

Ju = lead field

Vim = voltage in the lead due to the volume source J'in the volume conductor

L =magnetic permeability of the medium
o = conductivity of the medium
¥  =radius vector.

An unbounded homogeneous medium is required for the conductivity to be dual to the magnetic
permeability, where the latter is uniform in the body and in space. As in electric measurements, it is
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possible to create compound magnetic leads by connecting any number of detectors together.
We investigate now the nature of the magnetic lead field .y produced by reciprocal energization
of the coil of the magnetic detector with a current /. at an angular frequency . Using the same sign
convention between the energizing current and the measured voltage as in the electric case, Figure 11.23,
we obtain the corresponding situation for magnetic measurements, as illustrated in Figure 12.2.
The reciprocal magnetic field &1y arising from the magnetic scalar potential @y has the form:

Ho=-VOu (12.07)

The reciprocal magnetic induction 5y is

ELM = HJ?LM (12-08)

where p is the magnetic permeability of the medium. We assume p to be uniform (a constant), reflecting
the assumed absence of discrete magnetic materials.

The reciprocal electric field 1y arising from the reciprocal magnetic induction Fpy (resulting
from the energized coil) depends on the field and volume conductor configuration. For a magnetic field
that is axially symmetric and uniform within some bounded region (cylindrically symmetric situation),
2nrE, = n°B, within that region ( ® and z being in cylindrical coordinates), or in vector notation:

e

F _l=vB. . _
Ery=57x8 = 5

In this equation Fis a radius vector in cylindrical coordinates measured from the symmetry axis (z)
as the origin. As before, harmonic conditions are assumed so that all field quantities are complex phasors.
In addition, as noted before, /(®) is adjusted so that the magnitude of By is independent of . The 90-
degree phase lag of the electric field relative to the magnetic field,is assumed to be contained in the
electric field phasor. The field configuration assumed above should be a reasonable approximation for
practical reciprocal fields established by magnetic field detector.

The result in Equation 12.9 corresponds to the reciprocal electric field &g = -¥® produced by the
reciprocal energization of an electric lead (described in Equation 11.53 in the previous chapter).
The magnetic lead field current density may be calculated from Equation 12.9. Since

I.?LM = O-ELM (1210)

we obtain for the magnetic lead field JIM

JLM=%F>< I (12.11)

As before, the quantity Z1y; is the magnetic induction due to the reciprocal energization at a frequency o
of _the pickup lead.
This magnetic lead field .71 has the following properties:
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1. The lead field current density J |y is everywhere circular and concentric with the symmetry axis.
The magnitude of the lead field current density J is proportional to the distance from the symmetry axis »
(so long as the field point remains within the uniform Foiu field).

3. As a consequence of (2), the sensitivity is zero on the symmetry axis. Therefore, the symmetry axis is
called the zero sensitivity line.

Based upon Equation 11.30 and noting that also in the magnetic case the reciprocal current /; is
normalized so that it is unity for all values of ®, we evaluate the voltage Viyv in the magnetic lead
produced by a current dipole moment density J' as (Plonsey, 1972)

1 _ .
Ve =_I-E~’TLM'~’T!'5£V (12.12)
i

This equation is similar to Equation 11.30, which describes the sensitivity distribution of electric
leads. The sensitivity distribution of a magnetic measurement is, however, different from that of the
electric measurement because the magnetic lead field .71y has a different form from that of the electric
lead field J (.

In the material above, we assumed that the conducting medium is uniform and infinite in extent.
This discussion holds also for a uniform cylindrical conducting medium of finite radius if the reciprocally
energized magnetic field is uniform and in the direction of the symmetry axis. This comes about because
the concentric circular direction of .Sy in the unbounded case is not interfered with when the finite
cylinder boundary is introduced. As in the infinite medium case, the lead field current magnitude is
proportional to the distance » from the symmetry axis. On the axis of symmetry, the lead field current
density is zero, and therefore, it is called the zero sensitivity line (Eskola, 1983; Eskola and Malmivuo,
1983).

The form of the magnetic lead field is illustrated in detail in Figure 12.3. For comparison, the
magnetic lead field is illustrated in this figure with four different methods. Figure 12.3A shows the
magnetic lead field current density in a perspective three-dimensional form with the lead field flow lines
oriented tangentially around the symmetry axis. As noted before, because the lead field current density is
proportional to the radial distance » from the symmetry axis, the symmetry axis is at the same time a zero
sensitivity line. Figure 12.3B shows the projection of the lead field on a plane transverse to the axis. The
flow lines are usually drawn so that a fixed amount of current is assumed to flow between two flow lines.
Thus the flow line density is proportional to the current density. (In this case, the lead field current has a
component normal to the plane of illustration, the flow lines are discontinuous, and some inaccuracy is
introduced into the illustration, as may be seen later in Section 13.4.) Figure 12.3C illustrates the lead
field with current density vectors, which are located at corners of a regular grid. Finally, Figure 12.3D
shows the magnitude of the lead field current density Jiy as a function of the radial distance » from the
symmetry axis with the distance from the magnetometer 4 as a parameter. This illustration does not show
the direction of the lead field current density, but it is known that it is tangentially oriented. In Figure
12.3E the dashed lines join the points where the lead field current density has the same value, thus they
are called the isosensitivity lines.

The relative directions of the magnetic field and the induced currents and detected signal are
sketched in Figure 12.2. If the reciprocal magnetic field 51y of Equation 12.11 is uniform and in the
negative coordinate direction, as in Figure 12.2, the form of the resulting lead field current density J 1y is
tangential and oriented in the positive direction of rotation. It should be remembered that harmonic
conditions have been assumed so that since we are plotting the peak magnitude of E v versus .,_TLM, the
sign chosen for each vector class is arbitrary.
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The instantaneous relationship can be found from Equation 12.11, if the explicit phasor notation is
restored, including the 90-degree phase lag of ./ .

Fig. 12.3. Lead field current density of a magnetic lead.

(A) The lead field current density - that is, the sensitivity - is directed tangentially, and its magnitude
is proportional to the distance from the symmetry axis. Note that in this figure the dashed line represents
the symmetry axis where the lead field current density is zero.

(B) Lead field current density shown on one plane with flow lines and
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(C) with current density vectors.
(D) Lead field current density as a function of distance from the symmetry axis.
(E) Isosensitivity lines of the lead.

12.3.2 The Source of the Magnetic Field

This section provides an alternative description of the source of the magnetic field sensed by magnetic pickup coils
(which is valid for the case of axial symmetry). By substituting Equation 12.9 into Equation 12.10, and then this
equation into Equation 12.12, we obtain (note that Fis in cylindrical coordinates)

Vi =5 [(FXT DL )T dv= S [V 7 x T v (12.13)
¥ ¥

Using the vector identity % *(®pv7” ><.,_Ti) =Qp\Ve (7 ><.,_Ti) + VO m(F*J "), we obtain from Equation 12.13

u o
[ @paeVelmx Tyav (12.14)

VLM = EI?.((I)LMFX j!-:lﬁfv—g
¥ ¥

Applying the divergence theorem to the first term on the right-hand side and using a vector expansion
(e, V=(FxJ') = J' =¥xF- 7*¥xJ") on the second term of Equation 12.14, and noting that ¥x#= 0, we
obtaln

VLM——J-@LM{.?'XJ )-d3+zj¢:mr-vxi dv (12.15)

¥
Since J' = 0 at the boundary of the medium, the surface integral equals zero, and we may write

Vi =g_[¢’LMF'?in'ﬂf‘v’ (12.16)
¥

This equation corresponds to Equation 11.50 in electric measurements. The quantity ®@py is the magnetic
scalar potential in the volume conductor due to the reciprocal energization of the pickup lead. The
expression ¥xJ" is defined as the vortex source, i

I,=WuJ! (12.17)
In Equation 12.16 this is the strength of the magnetic field source.

The designation of vortex to this source arises out of the definition of curl. The latter is the
circulation per unit area, that is:

Vud=— b Audl (12.18)
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and the line integral is taken around AS at any point in the region of interest such that it is oriented in the
field to maximize the integral (which designates the direction of the curl).

If one considers the velocity field associated with a volume of water in a container, then its flow
source must be zero if water is neither added nor withdrawn. But the field is not necessarily zero in the
absence of flow source because the water can be stirred up, thereby creating a nonzero field. But the
vortex thus created leads to a nonzero curl since there obviously exists a circulation. This explains the use
of the term "vortex" as well as its important role as the source of a field independent of the flow source.

12.3.3 Summary of the Lead Field Theoretical Equations for Electric and Magnetic
Measurements

As summarized in Figure 12.2, as a consequence of the reciprocal energization of a magnetic lead, the following
five reciprocal fields are created in the volume conductor: magnetic scalar potential field @y, (illustrated with
isopotential surfaces), magnetic field Z 1 (illustrated with field lines), magnetic induction & (illustrated with
flux lines), electric field E M (illustrated with field lines), and current field U_TLM (illustrated with current flow lines
and called the lead field).

In addition to these five fields we may define for a magnetic lead a sixth field: the field of isosensitivity
surfaces. This is a similar concept as was defined for an electric lead in Section 11.6.6. When the magnetic
permeability is isotropic (as it usually is in biological tissues), the magnetic field lines coincide with the magnetic
induction flux lines. When the conductivity is isotropic, the electric field lines coincide with the current flow lines.
Thus in summary, in a lead system detecting the magnetic dipole moment of a volume source (see Section 12.6)
from the aforementioned six fields, the magnetic field lines coincide with the magnetic flux lines and the electric
field lines coincide with the lead field flow lines. Similarly as in the electric case (see Section 11.6.6), the magnetic
scalar isopotential surfaces coincide with the magnetic isofield and isoflux surfaces.

Table 12.1 summarizes the lead field theoretical equations for electric and magnetic measurements.

The spatial dependence of the electric and magnetic scalar potentials @ and @y, are found from Laplace's
equation. These fields will have the same form (as will g e vs. H Lm), if the shape and location of the electrodes
and magnodes are similar and if there is no effect of the volume conductor inhomogeneities or boundary with air.
Similarly, the equations for the electric and magnetic signals Vg and V1, as integrals of the scalar product (dot
product) of the lead field and the impressed current density field, have the same form.

The difference in the sensitivity distributions of the electric and magnetic detection of the impressed current
density J'is a result of the difference in the form of the electric and magnetic lead fields .,_TLE and U_TLM. The first has
the form of the reciprocal electric field, whereas the latter has the form of the cur/ of the reciprocal magnetic field.

We emphasize again that this discussion of the magnetic field is restricted to the case of axially symmetric
and uniform conditions (which are expected to be applicable as a good approximation in many applications).
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Table 12.1. The equations for electric and magnetic leads

Quantity Electric lead Magnetic lead
Field as a negative & =- YO, (11.53) Hiv=-VOu (12.7)
gradient

of the scalar
potential

of the reciprocal
energization

Magnetic induction Bin=nH w (12.8)
due to reciprocal
energization

R . . Fn = - . | —_— — — I .
'eC|procaI electric & g(=-V D) (11.53) Eoy = FxBu (12.9)
field *)
Lead field (current ELE = OELE (11.54) ELM = GELM (12.10)
field)
Detected signal 1 = = (11.30) 1 - - (12.12)
when: IVLE :.I-EJLEIJJQ?‘P VLM =J-E..JTLMI.JT!|:£V

¥

lre=1A,
d/RM/dt =1 A/S

*) Note: The essential difference between the electric and magnetic lead fields is explained as follows: The
reciprocal electric field of the electric lead has the form of the negative gradient of the electric scalar
potential (as explained on the first line of this table). The reciprocal electric field of the magnetic lead has the
form of the curl of the negative gradient of the magnetic scalar potential. (In both cases, the lead field, which
is defined as the current field, is obtained from the reciprocal electric field by multiplying by the
conductivity.) Numbers in parentheses refer to equation numbers in text.
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12.4 THE MAGNETIC DIPOLE MOMENT OF A VOLUME SOURCE

PRECONDITIONS:
SOURCE: Distribution of J' forming a volume source
CONDUCTOR: Finite, inhomogeneous

The magnetic dipole moment of a volume current distribution Jwith respect to an arbitrary origin is
defined as (Stratton, 1941):

i = %—j?xf&ﬁf

¥

(12.19)

where Fis a radius vector from the origin. The magnetic dipole moment of the total current density J,
which includes a distributed volume current source ' and its conduction current,

J=J-oVO (7.2)

is consequently

(12.20)

Assuming 6 to be piecewise constant, we may use the vector identity VxF® = OV xF + VOxF = -F
W O (because = 0), and convert the second term on the right-hand side of Equation 12.20 to the form:

%ITxFJEIJdV

¥

(12.21)

We now apply Equation 12.4 to 12.21 and note that the volume and hence surface integrals must be
calculated in a piecewise manner for each region where ¢ takes on a different value. Summing these
integrals and designating the value of conductivity ¢ with primed and double-primed symbols for the
inside and outside of each boundary, we finally obtain from Equation 12.20:

ﬁzzjrxj .:fv+22_[(cr - DT =T,
§&

(12.22)

This equation gives the magnetic dipole moment of a volume source J' located in a finite inhomogeneous
volume conductor. As in Equation 12.6, the first term on the right-hand side of Equation 12.22 represents
the contribution of the volume source, and the second term the contribution of the boundaries between
regions of different conductivity. This equation was first derived by David Geselowitz (Geselowitz,
1970).
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12.5 IDEAL LEAD FIELD OF A LEAD DETECTING THE EQUIVALENT MAGNETIC
DIPOLE OF A VOLUME SOURCE

PRECONDITIONS:
SOURCE: Distribution of J' forming volume source (at the origin)
CONDUCTOR: Infinite (or spherical) homogeneous

This section develops the form of the lead field for a detector that detects the equivalent magnetic dipole
moment of a distributed volume source located in an infinite (or spherical) homogeneous volume
conductor. We first have to choose the origin; we select this at the center of the source. (The selection of
the origin is necessary, because of the factor » in the equation of the magnetic dipole moment, Equation
12.22.)

The total magnetic dipole moment of a volume source is evaluated in Equation 12.20 as a volume
integral. We notice from this equation that a magnetic dipole moment density function is given by the
integrand, namely

sz Ly 7! (12.23)

[ L

Equation 12.14 provides a relationship between the (magnetic) lead voltage and the current source
distribution ', namely

Vi = [FxBppeeTldv=—-L[Byyer = T'dv (12.24)

Substituting Equation 12.23 into Equation 12.24 gives the desired relationship between the lead voltage
and magnetic dipole moment density, namely

Vi = _IELM T dv (12.25)

This equation may be expressed in words as follows:

1. One component of the magnetic dipole moment of a volume source is obtained with a detector
which, when energized, produces a homogeneous reciprocal magnetic field &1y in the negative
direction of the coordinate axis in the region of the volume source.

2. This reciprocal magnetic field produces a reciprocal electric field Eiy="FxE mand a magnetic
lead field J v = 0 £ in the direction tangential to the symmetry axis.

3. Three such identical mutually perpendicular lead fields form the three orthogonal components of a
complete lead system detecting the magnetic dipole moment of a volume source.

Figure 12.4 presents the principle of a lead system detecting the magnetic dipole moment of a
volume source. It consists of a bipolar coil system (Figure 12.4A) which produces in its center the three
components of the reciprocal magnetic field 51y (Figure 12.4B). Note, that the region where the coils of
Figure 12.4A produce linear reciprocal magnetic fields is rather small, as will be explained later, and
therefore the Figures 12.4A and 12.4B are not in scale. The three reciprocal magnetic fields EBm produce
the three components of the reciprocal electric field &1y and the lead field .71y that are illustrated in
Figure 12.5. It is important to note that the reciprocal magnetic field £1y has the same geometrical form
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as the reciprocal electric field F1g of a detector which detects the electric dipole moment of a volume
source, Figure 11.24.

Similarly as in the equation of the electric field of a volume source, Equation 7.9, the second term
on the right-hand side of Equation 12.22 represents the contribution of the boundaries and
inhomogeneities to the magnetic dipole moment. This is equivalent to the effect of the boundaries and
inhomogeneities on the form of the lead field. In general, a detector that produces an ideal lead field in the
source region despite the boundaries and inhomogeneities of the volume conductor detects the dipole
moment of the source undistorted.

A A B

Fig. 12.4. The principle of a lead system detecting the magnetic dipole moment of a volume
source.

(A) The three orthogonal bipolar coils.

(B) The three components of the reciprocal magnetic field 51y in the center of the bipolar
coil system.

The region where the coils produce linear reciprocal magnetic fields is rather small and
therefore Figures 12.4A and 12.4B are not to scale.
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L J

Fig. 12.5. The three components of the lead field J v of an ideal lead system detecting the magnetic dipole
moment of a volume source.

Physiological Meaning of Magnetic Dipole

The sensitivity distribution (i.e., the lead field), illustrated in Figure 12.5, is the physiological meaning of the
measurement of the (equivalent) magnetic dipole of a volume source.

Similarly as in the detection of the electric dipole moment of a volume source, the concept of "physiological
meaning" can be explained in the detection of the magnetic dipole moment of a volume source as follows: When
considering the forward problem, the lead field illustrates what is the contribution (effect) of each active cell to the
signals of the lead system. When one is considering the inverse problem, the lead field illustrates similarly the most
probable distribution and orientation of active cells when a signal is detected in a lead.
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12.6 SYNTHESIZATION OF THE IDEAL LEAD FIELD FOR THE DETECTION OF THE
MAGNETIC DIPOLE MOMENT OF A VOLUME SOURCE

PRECONDITIONS:
SOURCE: Volume source (at the origin)
CONDUCTOR: Finite, homogeneous with spherical symmetry

As in the case of the detection of the electric dipole moment of a volume source, Section 11.6.9, both
unipolar and bipolar leads may be used in synthesizing the ideal lead field for detecting the magnetic
dipole moment of a volume source. In the case of an infinite conducting medium and a uniform reciprocal
magnetic field, the lead field current flows concentrically about the symmetry axis, as shown in Figure
12.3. Then no alteration results if the conducting medium is terminated by a spherical boundary (since the
lead current flow lines lie tangential to the surface). The spherical surface ensures lead current flow lines,
as occurs in an infinite homogeneous medium, when a uniform reciprocal magnetic field is established
along any x-, y-, and z-coordinate direction.

If the dimensions of the volume source are small in relation to the distance to the point of
observation, we can consider the magnetic dipole moment to be a contribution from a point source. Thus
we consider the magnetic dipole moment to be a discrete vector. The evaluation of such a magnetic dipole
is possible to accomplish through unipolar measurements on each coordinate axis as illustrated on the left
hand side of Figure 12.6A. If the dimensions of the volume source are large, the quality of the
aforementioned lead system is not high. Because the reciprocal magnetic field decreases as a function of
distance, the sensitivity of a single magnetometer is higher for source elements locating closer to it than
for source elements locating far from it. This is illustrated on the right hand side of Figure 12.6A. In
Figure 12.6 the dashed lines represent the reciprocal magnetic field flux tubes. The thin solid circular
lines represent the lead field flow lines. The behavior of the reciprocal magnetic field of a single
magnetometer coil is illustrated more accurately in Figures 20.14, 20.15, and 22.3.

The result is very much improved if we use symmetric pairs of magnetometers forming bipolar
leads, as in Figure 12.6B. This arrangement will produce a reciprocal magnetic field that is more uniform
over the source region than is attained with the single coils of the unipolar lead system. (Malmivuo,
1976).

Just as with the electric case, the quality of the bipolar magnetic lead fields in measuring volume
sources with large dimensions is further improved by using large coils, whose dimensions are comparable
to the source dimensions. This is illustrated in Figure 12.6C..
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BIPOLAR LEADS, LARGE COILS

Fig. 12.6. Properties of unipolar and bipolar leads in detecting the equivalent magnetic dipole moment of a
volume source. The dashed lines illustrate the isosensitivity lines. The thin solid circular lines represent the
lead field flow lines.

(A) If the dimensions of the volume source are small compared to the measurement distance the
most simple method is to make the measurement with unipolar leads on the coordinate axes.

(B) For volume sources with large dimensions the quality of the lead field is considerably improved
by using symmetric pairs of magnetometers forming bipolar leads.

(C) Increasing the size of the magnetometers further improves the quality of the leads.

To describe the behavior of the reciprocal magnetic field and the sensitivity distribution of a bipolar
lead as a function of coil separation we illustrate in Figure 12.7 these for two coil pairs with different
separation. (Please note, that the isosensitivity lines are not the same as the reciprocal magnetic field
lines.) Figure 12.7A illustrates the reciprocal magnetic field as rotational flux tubes for the Helmholtz
coils which are a coaxial pair of identical circular coils separated by the coil radius. With this coil
separation the radial component of the compound magnetic field at the center plane is at its minimum and
the magnetic field is very homogeneous. Helmholtz coils cannot easily be used in detecting biomagnetic
fields, but they can be used in magnetization or in impedance measurement. They are used very much in
balancing the gradiometers and for compensating the Earth's static magnetic field in the measurement
environment. Figure 12.7B illustrates the reciprocal magnetic field flux tubes for a coil pair with a
separation of 5r. Figures 12.7C and 12.7D illustrate the isosensitivity lines for the same coils.

Later in Chapter 20, Figure 20.16 illustrates the isosensitivity lines for a coil pair with a separation
of 32r. Comparing these two bipolar leads to the Helmholtz coils one may note that in them the region of
homogeneous sensitivity is much smaller than in the Helmholtz coils. Due to symmetry, the homogeneity
of bipolar leads 1is, however, much better than that of corresponding unipolar leads.

The arrangement of bipolar lead must not be confused with the differential magnetometer or
gradiometer system, which consists of two coaxial coils on the same side of the source wound in opposite
directions. The purpose of such an arrangement is to null out the background noise, not to improve the
quality of the lead field. The realization of the bipolar lead system with gradiometers is illustrated in
Figure 12.8. Later Figure 12.20 illustrates the effect of the second coil on the gradiometer sensitivity
distribution for several baselines..
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Fig. 12.7. Flux tubes of the reciprocal magnetic field of

(A) the Helmholtz coils having a coil separation of

(B) bipolar lead with a coil separation of 5r.

The isosensitivity lines for

(C) the Helmbholtz coils having a coil separation of »

(D) bipolar lead with a coil separation of 5r.

(Note, that the isosensitivity lines are not the same as the flux tubes of the reciprocal
magnetic field.).
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Fig. 12.8. Bipolar lead system for detecting the magnetic dipole moment of a volume source realized with
gradiometers.
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12.7 COMPARISON OF THE LEAD FIELDS OF IDEAL BIPOLAR LEADS FOR DETECTING
THE ELECTRIC AND THE MAGNETIC DIPOLE MOMENTS OF A VOLUME SOURCE

PRECONDITIONS:
SOURCE: Electric and magnetic dipole moments of a volume source
CONDUCTOR: Infinite, homogeneous

In summary, we note the following details from the lead fields of ideal bipolar lead systems for detecting
the electric and magnetic dipole moments of a volume source:

12.7.1 The Bipolar Lead System for Detecting the Electric Dipole Moment

1. The lead system consists of three components.

2. For a spherically symmetric volume conductor, each is formed by a pair of electrodes (or
electrode matrices), whose axis is in the direction of the coordinate axes. Each electrode is on
opposite sides of the source, as shown in Figure 11.24.

3. For each of these components, when energized reciprocally, a homogeneous and linear electric
field is established in the region of the volume source (see Figure 11.25). Each of these reciprocal
electric fields forms a similar current field, which is called the electric lead field JLE. (Note the
similarity of Figure 11.25, illustrating the reciprocal electric field &g of an electric lead, and
Figure 12.7, illustrating the reciprocal magnetic field &1y of a magnetic lead.)
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12.7.2 The Bipolar Lead System for Detecting the Magnetic Dipole Moment

1. The lead system consists of three components.

2. In the spherically symmetric case, each of them is formed by a pair of magnetometers (or
gradiometers) located in the direction of the coordinate axes on opposite sides of the source, as
illustrated in Figure 12.6C (or 12.8).

3. For each of these components, when energized reciprocally, a homogeneous and linear magnetic
field is established in the region of the volume source, as shown in Figure 12.4.

4. Each of these reciprocal magnetic fields forms an electric field, necessarily tangential to the
boundaries. These reciprocal electric fields give rise to a similar electric current field, which is
called the magnetic lead field .71y, as described in Figure 12.5.

Superimposing Figures 12.8, 12.4, and 12.5 allows one more easily to visualize the generation and shape
of the lead fields of magnetic leads.

12.8 THE RADIAL AND TANGENTIAL SENSITIVITIES OF THE LEAD SYSTEMS
DETECTING THE ELECTRIC AND MAGNETIC DIPOLE MOMENTS OF A VOLUME
SOURCE

PRECONDITIONS:
SOURCE: Electric and magnetic dipole moments of a volume source
CONDUCTOR: Infinite, homogeneous

12.8.1 Sensitivity of the Electric Lead

The radial and tangential sensitivities of the lead system detecting the electric dipole moment of a volume source
may be easily estimated for the case where an ideal lead field has been established.

Figure 12.9 describes the cross section of a spherical volume source in an infinite homogeneous volume
conductor and two components of the lead field for detecting the electric dipole moment. Let @ denote the angle
between the horizontal electric lead field flow line and a radius vector #from the center of the spherical source to
the point at which the radial and tangential source elements Jiand J respectively, lie. According to Equation
11.30, the lead voltage Vg is proportional to the projection of the impressed current density J' on the lead field
flow line. The sensitivity of the total electric lead is the sum of the sensitivities of the two component leads; hence
for the radial component J ! we obtain:

Vg (J)=Jl (sing+cosd) (12.26)

whereas for the tangential component Jit it is:

Vg (i) =Ji(sing+cosd) (12.27)

In these expressions the component lead fields are assumed uniform and of unit magnitude.

We note from Equations 12.26 and 12.27 that the total sensitivity of these two components of the
electric lead to radial and tangential current source elements J' is equal and independent of their
location. The same conclusion also holds in all three dimensions..
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Fig. 12.9. Relative sensitivity of the electric lead system to radial and tangential current dipoles Jiand J'.

12.8.2 Sensitivity of the Magnetic Lead

From Equation 12.13 and from the definition of the magnetic dipole moment of a volume source (see Equation
12.22), it may be seen that the magnetic lead system and its components are sensitive only to tangential source-
elements. The magnitude of the sensitivity is, as noted before, proportional to the distance from the symmetry axis.

12.9 SPECIAL PROPERTIES OF THE MAGNETIC LEAD FIELDS

PRECONDITIONS:
SOURCE: Volume source
CONDUCTOR: Finite, inhomogeneous, cylindrically symmetric

The special properties of electric lead fields, listed in Section 11.6.10, also hold for magnetic lead fields.
Magnetic lead fields also have some additional special properties which can be summarized as follows:

1. If the volume conductor is cut or the boundary of an inhomogeneity is inserted along a lead field
current flow line, the form of the lead field does not change (Malmivuo, 1976). This explains why
with either a cylindrically or spherically symmetric volume conductor, the form of the symmetric
magnetic lead field is unaffected. There are two important practical consequences:
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1. Because the heart may be approximated as a sphere, the highly conducting intracardiac
blood mass, which may be considered spherical and concentric, does not change the form
of the lead field. This means that the Brody effect does not exist in magnetocardiography
(see Chapter 18).

2. The poorly conducting skull does not affect the magnetic detection of brain activity as it
does with electric detection (see Figure 12.10).

Magnetic lead fields in volume conductors exhibiting spherical symmetry are always directed
tangentially. This means that the sensitivity of such magnetic leads in a spherical conductor to
radial electric dipoles is always zero. This fact has special importance in the MEG (see Figure
12.11).

If the electrodes of a symmetric bipolar electric lead are located on the symmetry axis of the
bipolar magnetic field detector arranged for a spherical volume conductor, the lead fields of these
electric and magnetic leads are normal to each other throughout the volume conductor, as
illustrated in Figure 12.12 (Malmivuo, 1980). (The same holds for corresponding unipolar leads as
well, though not shown in the figure.)

The lead fields of all magnetic leads include at least one zero sensitivity line, where the sensitivity
to electric dipoles is zero. This line exists in all volume conductors, unless there is a hole in the
conductor in this region (Eskola, 1979, 1983; Eskola and Malmivuo, 1983). The zero sensitivity
line itself is one tool in understanding the form of magnetic leads (as demonstrated in Figure
12.13).

The reciprocity theorem also applies to the reciprocal situation. This means that in a tank model it
is possible to feed a "reciprocally reciprocal" current to the dipole in the conductor and to measure
the signal from the lead. However, the result may be interpreted as having been obtained by
feeding the reciprocal current to the lead with the signal measured from the dipole. The benefit of
this "reciprocally reciprocal" arrangement is that for technical reasons the signal-to-noise ratio
may be improved while we still have the benefit of interpreting the result as the distribution of the
lead field current in the volume conductor (Malmivuo, 1976)..
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Fig. 12.11. Magnetic lead fields in volume conductors exhibiting spherical symmetry are always
directed tangentially. The figure illustrates also the approximate form of the zero sensitivity line in
the volume conductor. (The zero sensitivity line may be imagined to continue hypothetically
through the magnetometer coil.).

BIPOLAR ELECTRIC LEAD  BIPOLAR MAGMETIC LEAD BIFOLAR ELECTRIC AND
MAGMNETIC LEADS

Fig. 12.12. If the electrodes of a symmetric bipolar electric lead are located on the symmetry axis
of the bipolar magnetic field detector arranged for a spherical volume conductor, these lead fields
of the electric and magnetic leads are normal to each other throughout the volume conductor.
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Fig. 12.13. Zero sensitivity lines in volume conductors of various forms. The dimensions are
given in millimeters (Eskola, 1979, 1983; Eskola and Malmivuo, 1983). As in Figure 12.11, the
zero sensitivity lines are illustrated to continue hypothetically through the magnetometer coils.

12.10 THE INDEPENDENCE OF BIOELECTRIC AND BIOMAGNETIC FIELDS AND
MEASUREMENTS

12.10.1 Independence of Flow and Vortex Sources
Helmholtz's theorem (Morse and Feshbach, 1953; Plonsey and Collin, 1961) states:

"4 general vector field, that vanishes at infinity, can be completely represented as the sum of two independent vector
fields, one that is irrotational (zero curl) and another that is solenoidal (zero divergence)."

The impressed current density J'is a vector field that vanishes at infinity and, according to the theorem,
may be expressed as the sum of two components:
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T =Te+75 (12.28)

where F and V denote flow and vortex, respectively. By definition, these vector fields satisty TxdE=0
and Tl = 0.

We first examine the independence of the electric and magnetic signals in the infinite homogeneous
case, when the second term on the right-hand side of Equations 7.10 and 12.6, caused by
inhomogeneities, is zero. These equations may be rewritten for the electric potential:

. " Fi
A = J'v(l]u? dv = J'1F T v (12.29)
¥ d ¥ d

and for the magnetic field:

4 H =—I‘F(1]xj!d‘w=—j?x£ dv (12.30)

r ¥
¥ v

Substituting Equation 12.28 into Equations 12.29 and 12.30 shows that under homogeneous and
unbounded conditions, the bioelectric field arises from V+J's , which is the flow source (Equation 7.5),
and the biomagnetic field arises from ¥x.J'y , which is the vortex source (Equation 12.17). Since the
detection of the first biomagnetic field, the magnetocardiogram, by Baule and McFee in 1963 (Baule and
McFee, 1963), the demonstration discussed above raised a lot of optimism among scientists. If this
independence were confirmed, the magnetic detection of bioelectric activity could bring much new
information not available by electric measurement.

Rush was the first to claim that the independence of the electric and magnetic signals is only a
mathematical possibility and that physical constraints operate which require the flow and vortex sources,
and consequently the electric and magnetic fields, to be fundamentally interdependent in homogeneous
volume conductors (Rush, 1975). This may be easily illustrated with an example by noting that, for
instance, when the atria of the heart contract, their bioelectric activity produces an electric field recorded
as the P-wave in the ECG. At the same time their electric activity produces a magnetic field detected as
the P-wave of the MCG. Similarly the electric and magnetic QRS-complexes and T-waves are
interrelated, respectively. Thus, full independence between the ECG and the MCG is impossible.

In a more recent communication, Plonsey (1982) showed that the primary cellular source may be
small compared to the secondary cellular source and that the latter may be characterized as a double layer
source for both the electric scalar and magnetic vector potentials.

12.10.2 Lead Field Theoretic Explanation of the Independence of Bioelectric and
Biomagnetic Fields and Measurements

The question of the independence of the electric and magnetic fields of a volume source and the interpretation of
Helmbholtz's theorem can be better explained using the lead field theory. We discuss this question in connection
with the equivalent electric and magnetic dipoles of a volume source. The discussion can, of course, be easily
extended to more complex source models as well.
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As explained in Section 11.6.6 the electric lead field is given by Equation 11.54. As discussed in Section
11.6.7, the lead system detecting the electric dipole moment of a volume source includes three orthogonal, linear,
and homogeneous reciprocal electric fields g Le Which raise three orthogonal, linear, and homogeneous electric lead
fields J ;.. These three leads are mutually independent and they detect the three orthogonal components of the flow
source.

As discussed in Section 12.3 the magnetic lead field is given by Equation 12.11. It was shown in Section
12.5 that the lead system detecting the magnetic dipole moment of a volume source includes three orthogonal,
linear, and homogeneous reciprocal magnetic fields 5y which raise three orthogonal circular magnetic lead fields
J v These three leads are mutually independent and they detect the three orthogonal components of the vortex
source.

In the aforementioned example, due to Helmholtz's theorem, the three independent electric leads are
independent of the three independent magnetic leads. In other words, no one of these six leads is a linear
combination of the other five. However, in the case of a physiological volume source, the electric and magnetic
fields and their three plus three orthogonal components which these six leads detect are not fully independent,
because when the source is active, it generates all the three plus three components of the electric and magnetic
fields in a way that links them together. Consequently, while all these six leads of a vector-electromagnetic lead
system have the capability to sense independent aspects of a source, that capability is not necessarily realized.

It will be shown in Chapter 20 within the discussion of magnetocardiography that when measuring the
electric and magnetic dipole moments of a volume source, both methods include three independent leads and
include about the same amount of information from the source. The information of these methods is, however,
different and therefore the patient groups which are diagnosed correctly with either method are not identical. If in
the diagnosis the electric and magnetic signals are used simultaneously, the correctly diagnosed patient groups may
be combined and the overall diagnostic performance increases. This may also be explained by noting that in the
combined method we have altogether 3 + 3 = 6 independent leads. This increases the total amount of information
obtained from the source.

12.11 SENSITIVITY DISTRIBUTION OF BASIC MAGNETIC LEADS

PRECONDITIONS:
SOURCE: Volume source
CONDUCTOR: Finite, inhomogeneous, cylindrically symmetric

12.11.1 The Equations for Calculating the Sensitivity Distribution of Basic
Magnetic Leads

Because in an infinite homogeneous volume conductor the magnetic lead field flow lines encircle the symmetry
axis, it is easy to calculate the sensitivity distribution of a magnetic lead in a cylindrically symmetric volume
conductor, whose symmetry axis coincides with the magnetometer axis. Then the results may be displayed as a
function of the distance from the symmetry axis with the distance from the detector as a parameter (Malmivuo,
1976).

Figure 12.14 illustrates the magnetometer coil L; and one coaxially situated lead field current flow line L,.
The magnetic flux F,, that links the loop L, due to the reciprocally energizing current /; in the magnetometer coil is
most readily calculated using the magnetic vector potential Adat the loop L, (Smythe, 1968, p. 290).

Faraday's law states that a time-varying magnetic field induces electromotive forces whose line integral
around a closed loop equals the rate of change of the enclosed flux

q‘_;,g_.df: dF (12.31)
i
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where F = [ F+#%da is the magnetic flux evaluated by the integral of the normal component of the
magnetic induction Facross the surface of the loop. For a circular loop the integral on the left-hand side
of Equation 12.31 equals 2nrE, where r is the radius of the loop, and we obtain for the current density

F dF

J=gf=——
2rrr ol

(12.32)

where o is the conductivity of the medium. The current density is tangentially oriented. Now the problem
reduces to the determination of the magnetic flux linking a circular loop in the medium due to a
reciprocally energizing current in the coaxially situated magnetometer coil..

Fig. 12.14. Geometry for calculating the spatial sensitivity of a magnetometer in a cylindrically
symmetric situation.

The basic equation for calculating the vector potential at point P due to a current / flowing in a thin
conductor is

- idi
A=t

F (12.33)

dm v rp
where [ = magnetic permeability of the medium

rp = distance from the conductor element to the point P

This equation can be used to calculate the vector potential at the point P in Figure 12.14. From symmetry
we know that in spherical coordinates the magnitude of Ais independent of angle ®. Therefore, for
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simplicity, we choose the point P so that ® = 0. We notice that when equidistant elements of length d I at
+® and -O are paired, the resultant is normal to /r. Thus 4has only the single component 4. If we let di,
be the component of d{; in this direction, then Equation 12.33 may be rewritten as

yf di yf i n::osr;;'r i pooosdgdd
R C_f ¢ R ‘f 1 - R i . (12.34)
p p (rl +r2 + i —anmcosgd)?
The magnetic flux F,; may be calculated from the vector potential:
Foy = Ef) Agyrdly=2nr A, (12.35)

L2

With the substitution ¢ = - 20, this becomes

le ,UfR ll.?"_l.?" .[ .'?C(ESIH e —1) cfc:=,uf;_u ||.332+Ii.?"1+.?"2:|2 [[1—%]K(k)-£(k}:| (12.36)

\J{l k2 sint o

where

A
i = % (12.37)
B+ Ii.?"1+ .?"2)

and K(k) and E(k) are complete elliptic integrals of the first and second kind, respectively. These are
calculated from equations 12.38A,B. (Abramowitz and Stegun, 1964, p. 590)

L)
K(k,g] [ a-#?sin? g 2ag (12.38a)
1]

)
E[k,g]: [ a-k*sin® 9! 2ag (12.38b)
1]

The values K(k) and E(k) can also be calculated using the series:

Ty A 1 3 P 3.5
2 2 2 24 2-4-6
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2 2,4 2.6
Hl} SREEA E SR } (12.390)
2 2.4 3 2ed b 5

The calculation of K(k) and E(k) is faster from the series, but they give inaccurate results at small
distances from the coil and therefore the use of the Equations 12.38A,B is recommended.

Substituting Equation 12.36 into Equation 12.32 gives the lead field current density Jim as a
function of the rate of change of the coil current in the reciprocally energized magnetometer:

2

-7
4 10 k dl,
Jiyg= Z N ENTE MI—E]K&)—E(@} ! (12.40)

Because we are interested in the spatial sensitivity distribution and not in the absolute sensitivity
with certain frequency or conductivity values, the result of Equation 12.40 can be normalized by defining
(similarly as was done in Section 12.3.1 in deriving the equation for magnetic lead field)

dl, _
Y (12.41)
a=1

and we obtain the equation for calculating the lead field current density for a single-coil magnetometer in
an infinite homogeneous volume conductor:

-7 2
Tiae =220 B kg Hl—%]ﬁ(ﬂc)—ﬁcm} (12.42)

ra

where all distances are measured in meters, and current density in [A/m?].
If the distance 4 is large compared to the coil radius 7 and the lead field current flow line radius r,,

the magnetic induction inside the flow line may be considered constant, and Equation 12.42 is greatly

simplified. The value of the magnetic flux becomes 7*. Substituting it into Equation 12.32, we obtain

Fr o5
Jooe =0 22 (12.43)
Lyt ==

The magnetic induction may be calculated in this situation as for a dipole source. Equation 12.43 shows
clearly that in the region of constant magnetic induction and constant conductivity, the lead field current
density is proportional to the radial distance from the symmetry axis. Note that this equation is consistent
with Equation 12.11.
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12.11.2 Lead Field Current Density of a Unipolar Lead of a Single-Coil
Magnetometer

Owing to symmetry, the lead field current density is independent of the angle ® in Figure 12.14. Therefore, the
lead field current density may be plotted as a function of the radial distance » from the symmetry axis with the
distance /4 from the magnetometer as a parameter. Figure 12.15 shows the lead field current density distribution of a
unipolar lead created by a single-coil magnetometer with a 10-mm coil radius in a cylindrically symmetric volume
conductor calculated from Equation 12.42. The lead field current density is directed in the tangential direction.
(With proper scaling, the figure may be used for studying different measurement distances.)

Figure 12.15 shows that in a unipolar lead the lead field current density is strongly dependent on the
magnetometer coil distance. It also shows the small size of the region where the lead field current density increases
approximately linearly as a function of the radial distance from the symmetry axis, especially in the vicinity of the
coil.

The dashed lines in Figure 12.15 are the isosensitivity lines; these join the points where the lead field current
density is 100, 200, 300, 400, and 500 pA/mZ, respectively, as indicated by the numbers in italics..

Magnetometer coil
=10 mm

\"\ -
' /éj'f;f
500 _/,_/‘w.___—f———f““~hf——————
] l— e
EI:II:I// LI 1 \kl L T I I 1 iy zﬂﬂ 1
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Fig. 12.15. The lead field current density distribution of a unipolar single-coil magnetometer with
a 10 mm coil radius in a cylindrically symmetric volume conductor calculated from Equation
12.42. The dashed lines are the isosensitivity lines, joining the points where the lead field current
density is 100, 200, 300, 400, and 500 pA/mz, respectively, as indicated by the numbers in italics.

Figure 12.16 illustrates the isosensitivity lines for a unipolar single-coil magnetometer of Figure 12.15;
the coil radius is 10 mm, and the volume conductor is cylindrically symmetric. The vertical axis indicates
the distance /# from the magnetometer and the horizontal axis the radial distance » from the symmetry
axis. The symmetry axis, drawn with thick dashed line, is the zero sensitivity line. The lead field current
flow lines are concentric circles around the symmetry axis. To illustrate this, the figure shows three flow
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lines representing the current densities 100, 200, and 300 pA/m2 at the levels # = 125 mm, 175 mm and
225 mm. As in the previous figure, the lead field current density values are calculated for a reciprocal
current of [ =1 A/s.

The effect of the coil radius in a unipolar lead on the lead field current density is shown in Figure
12.17. In this figure, the lead field current density is illustrated for coils with 1 mm, 10 mm, 50 mm, and
100 mm radii. The energizing current in the coils is normalized in relation to the coil area to obtain a
constant dipole moment. The 10 mm radius coil is energized with a current of dlI/dt =1 [A/s].

hagnetameter coil

F= 10 mm

180 rimm]
) 20 40 60 80 100

1|:|4|,' so0d aobo

[]
25'] : L L L = L PR
h[mm] X El_ A P’ 100

I Zerosensitivity line

Fig. 12.16. The isosensitivity lines for a unipolar single-coil magnetometer of Figure 12.15; the
coil radius is 10 mm, and the volume conductor is cylindrically symmetric. The vertical axis
indicates the distance /4 from the magnetometer and the horizontal axis the radial distance » from
the symmetry axis. The symmetry axis, drawn with a thick dashed line, is the zero sensitivity line.
Thin solid lines represent lead field current flow lines.
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Fig. 12.17. Lead field current density for unipolar leads of coils with I mm, 10 mm, 50 mm, and
100 mm radii. The energizing current in the coils is normalized in relation to the coil area to
obtain a constant dipole moment.

12.11.3 The Effect of the Distal Coil to the Lead Field of a Unipolar Lead

Because of the small signal-to-noise ratio of the biomagnetic signals, measurements are usually made with a first-
or second- order gradiometer. The first-order gradiometer is a magnetometer including two coaxial coils separated
by a certain distance, called baseline. The coils are wound in opposite directions. Because the magnetic fields of
distant (noise) sources are equal in both coils, they are canceled. The magnetic field of a source close to one of the
coils produces a stronger signal in the proximal coil (i.e., the coil closer to the source) than in the distal coil (farther
from the source), and the difference of these fields is detected. The magnetometer sensitivity to the source is
diminished by the distal coil by an amount that is greater the shorter the baseline. The distal coil also increases the
proximity effect - that is, the sensitivity of the differential magnetometer as a function of the distance to the source
decreases faster than that of a single-coil magnetometer.

Figure 12.18 illustrates the lead field current density for unipolar leads realized with differential
magnetometers (i.e., gradiometers). Lead field current density J is illustrated with various baselines as a function of
radial distance  from the symmetry axis with the magnetometer distance 4 as a parameter. The differential
magnetometers have a 10 mm coil radius and a 300 mm, 150 mm, 100 mm, and 50 mm baseline..
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Fig. 12.18. Lead field current density for unipolar leads realized with differential magnetometers
of 10 mm coil radius and with 300 mm, 150 mm, 100 mm, and 50 mm baseline.

12.11.4 Lead Field Current Density of a Bipolar Lead

As discussed in Section 12.7 and illustrated in Figure 12.5, when detecting the dipole moment of a volume source
with dimensions which are large compared to the measurement distance, the lead field within the source area is
much more ideal if a bipolar lead instead of a unipolar one is used. Figure 12.19 shows the lead field current
density distribution of a bipolar lead in a cylindrically symmetric volume conductor realized with two coaxial
single-coil magnetometers with 10 mm coil radius. The distance between the coils is 340 mm. Note, that in the
bipolar lead arrangement the coils are wound in the same direction and the source is located between the coils. The
lead field current density as the function of radial distance is lowest on the symmetry plane, i.e. on the plane
located in the middle of the two coils. Because the two coils compensate each other's proximity effect, the lead
field current density does not change very much as a function of distance from the coils in the vicinity of the
symmetry plane. This is illustrated with the isosensitivity line of 500 pA/m®. Therefore the bipolar lead forms a
very ideal lead field for detecting the dipole moment of a volume source.

Figure 12.20 illustrates the lead field current density for the bipolar lead of Figure 12.19 with isosensitivity
lines. This figure shows still more clearly than the previous one the compensating effect of the two coils in the
vicinity of the symmetry plane, especially with short radial distances. The lead field current flows tangentially
around the symmetry axis. The flow lines are represented in the figure with thin solid lines..
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Fig. 12.19. The lead field current density distribution of a bipolar lead in a cylindrically
symmetric volume conductor realized with two coaxial single-coil magnetometers with 10 mm
coil radius. The distance between the coils is 340 mm. The dashed lines are the isosensitivity lines,
joining the points where the lead field current density is 500 and 1000 pA/m’, respectively, as
indicated with the numbers in italics.
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Electric and Magnetic Measurement
of the Electric Activity
of Neural Tissue

The remainder of this book focuses on clinical applications. Parts IV and V discuss the detection of
bioelectric and biomagnetic signals, classified on an anatomical basis, as having neural and cardiac
tissues as their sources, respectively. Within these parts the discussion is then further divided between
bioelectricity = and  biomagnetism to  point out the parallelism  between  them.

A wide variety of applications for bioelectric measurements are utilized in neurophysiology. These
include measurements on both peripheral nerves and on the central nervous system as well as
neuromuscular studies. The basic bioelectromagnetic theory underlying them all is, however, the same.
For this reason, and because it is not the purpose of this book to serve as a clinical reference, the
aforementioned applications are included in but not discussed here systematically.

Theoretically, especially with respect to volume conductors, the measurement principle of
electroencephalography (EEG) is most interesting of the clinical applications of bioelectricity in
neurology. Therefore, only this method is discussed in Chapter 13.

Similarly, in Chapter 14, in order to show the relationship between electric and magnetic
measurements of the bioelectric activity of the brain, the magnetoencephalogram (MEG) is cited as an
example of biomagnetic measurements in neurology.
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Electroencephalography

13.1 INTRODUCTION

The first recording of the electric field of the human brain was made by the German psychiatrist Hans
Berger in 1924 in Jena. He gave this recording the name electroencephalogram (EEG). (Berger,
1929).(From 1929 to 1938 he published 20 scientific papers on the EEG under the same title "Uber das
Elektroenkephalogram des Menschen".)

1. spontaneous activity,
evoked potentials, and
3. bioelectric events produced by single neurons.

Spontaneous activity is measured on the scalp or on the brain and is called
the electroencephalogram. The amplitude of the EEG is about 100 pV when measured on the
scalp, and about 1-2 mV when measured on the surface of the brain. The bandwidth of this signal
is from under 1 Hz to about 50 Hz, as demonstrated in Figure 13.1. As the phrase "spontaneous
activity" implies, this activity goes on continuously in the living individual.

Evoked potentials are those components of the EEG that arise in
response to a stimulus (which may be electric, auditory, visual, etc.) Such signals are usually
below the noise level and thus not readily distinguished, and one must use a train of stimuli and
signal averaging to improve the signal-to-noise ratio.

Single-neuron behavior can be examined through the use of
microelectrodes which impale the cells of interest. Through studies of the single cell, one hopes to
build models of cell networks that will reflect actual tissue properties.

13.2 THE BRAIN AS A BIOELECTRIC GENERATOR

PRECONDITIONS: o
SOURCE: Distribution of impressed current source elements J' (volume source)
CONDUCTOR: Finite, inhomogeneous

The number of nerve cells in the brain has been estimated to be on the order of 10'". Cortical neurons are
strongly interconnected. Here the surface of a single neuron may be covered with 1,000-100,000 synapses
(Nunez, 1981). The electric behavior of the neuron corresponds to the description of excitable cells
introduced in the earlier chapters. The resting voltage is around -70 mV, and the peak of the action
potential is positive. The amplitude of the nerve impulse is about 100 mV; it lasts about 1 ms.

The bioelectric impressed current density J' associated with neuronal activation produces an
electric field, which can be measured on the surface of the head or directly on the brain tissue. The
electric field was described by Equation 7.10 for a finite inhomogeneous model. This equation is repeated
here:

dwodlr)= J'E -‘F(%]dv+§_ j[g;. - o, )@?[%J 45, (13.01)
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While for most excitable tissue the basis for the impressed current density J' is the propagating
action potential, for the EEG it appears to arise from the action of a chemical transmitter on postsynaptic
cortical neurons. The action causes localized depolarization - that is, an excitatory postsynaptic potential
(EPSP) - or hyperpolarization - that is, an inhibitory postsynaptic potential (IPSP). The result in either
case is a spatially distributed discontinuity in the function c® (i.e., 6,D, - 0;®@;) which, as pointed out in
Equation 8.28, evaluates a double layer source in the membranes of all cells. This will be zero for resting
cells; however, when a cell is active by any of the aforementioned processes (in which case @, - ®; = V;,
varies over a cell surface), a nonzero primary source will result.

For distant field points the double layer can be summed up vectorially, yielding a net dipole for
each active cell. Since neural tissue is generally composed of a very large number of small, densely
packed cells, the discussion in Section 8.5 applies, leading to the identification of a continuous volume
source distribution /' which appears in Equations 7.6 and 7.10.

Although in principle the EEG can be found from the evaluation of Equation 7.10, the complexity
of brain structure and its electrophysiological behavior have thus far precluded the evaluation of the
source function J'. Consequently, the quantitative study of the EEG differs from that of the ECG or
EMG, in which it is possible to evaluate the source function. Under these conditions the quantitative EEG
is based on a statistical treatment, whereas the clinical EEG is largely empirical..

Relative amplitude

0 10 20 30 40 50
Frequency [HZ]

Fig. 13.1. Frequency spectrum of normal EEG.
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13.3 EEG LEAD SYSTEMS

The internationally standardized /0-20 system is usually employed to record the spontancous EEG. In this
system 21 electrodes are located on the surface of the scalp, as shown in Figure 13.2A and B. The
positions are determined as follows: Reference points are nasion, which is the delve at the top of the nose,
level with the eyes; and inion, which is the bony lump at the base of the skull on the midline at the back
of the head. From these points, the skull perimeters are measured in the transverse and median planes.
Electrode locations are determined by dividing these perimeters into 10% and 20% intervals. Three other
electrodes are placed on each side equidistant from the neighboring points, as shown in Figure 13.2B
(Jasper, 1958; Cooper, Osselton, and Shaw, 1969).

In addition to the 21 electrodes of the international 10-20 system, intermediate 10%
electrode positions are also used. The locations and nomenclature of these electrodes are
standardized by the American Electroencephalographic Society (Sharbrough et al., 1991; see
Figure 13.2C). In this recommendation, four electrodes have different names compared to the 10-
20 system; these are T7, Tg, P7, and Pg. These electrodes are drawn black with white text in the
figure.

Besides the international 10-20 system, many other electrode systems exist for recording
electric potentials on the scalp. The Queen Square system of electrode placement has been
proposed as a standard in recording the pattern of evoked potentials in clinical testings (Blumhardt
etal., 1977).

Bipolar or unipolar electrodes can be used in the EEG measurement. In the first method the
potential difference between a pair of electrodes is measured. In the latter method the potential of
each electrode is compared either to a neutral electrode or to the average of all electrodes (see
Figure 13.3).

The most recent guidelines for EEG-recording are published in (Gilmore, 1994).
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Fig. 13.2. The international 10-20 system seen from (A) left and (B) above the head. A = Ear
lobe, C = central, Pg = nasopharyngeal, P = parietal, F = frontal, Fp = frontal polar,

O = occipital.

(C) Location and nomenclature of the intermediate 10% electrodes, as standardized by the
American Electroencephalographic Society. (Redrawn from Sharbrough, 1991.).
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Fig. 13.3. (A) Bipolar and (B) unipolar measurements. Note that the waveform of the EEG
depends on the measurement location.

13.4 SENSITIVITY DISTRIBUTION OF EEG ELECTRODES

Rush and Driscoll (1969) calculated the sensitivity distribution of bipolar surface electrodes on the scalp
based on a concentric spherical head model. They published the results in the form of lead field
isopotential lines. The direction of the lead field current density - that is, the direction of the sensitivity -
is a negative gradient of the potential field. This is not immediately evident from such a display.

Puikkonen and Malmivuo (1987) recalculated the sensitivity distribution of EEG electrodes with
the same model as Rush and Driscoll, but they presented the results with the lead field current flow lines
instead of the isopotential lines of the lead field. This display is illustrative since it is easy to find the
direction of the sensitivity from the lead field current flow lines. Also the magnitude of the sensitivity can
be seen from the density of the flow lines. A minor problem in this display is that because the lead field
current distributes both in the plane of the illustration as well as in the plane normal to it, part of the flow
lines must break in order to illustrate correctly the current density with the flow line density in a three-
dimensional problem. Suihko, Malmivuo and Eskola (1993) calculated further the isosensitivity lines and
the half-sensitivity volume for the electric leads. As discussed in Section 11.6.1, the concept half-
sensitivity volume denotes the area where the lead field current density is at least one half from its
maximum value. Thus this concept is a figure of merit to describe how concentrated the sensitivity
distribution of the lead is. As discussed in Section 11.6.6, when the conductivity is isotropic, as it is in
this head model, the isosensitivity lines equal to the isofield lines of the (reciprocal) electric field. If the
lead would exhibit such a symmetry that adjacent isopotential surfaces would be a constant distance apart,
the isosensitivity lines would coincide with the isopotential lines. That is not the case in the leads of
Figure 13.4.

Figure 13.4 displays the lead field current flow lines, isosensitivity lines and half-sensitivity
volumes for the spherical head model with the electrodes located within 180°, 120°, 60°, 40°, and 20°
angles. Note that in each case the two electrodes are connected with 10 continuous lead field flow lines.
Between them are three flow lines which are broken from the center, indicating that the lead field current
distributes also in the plane normal to the paper. The figure shows clearly the strong effect of the poorly
conducting skull to the lead field. Though in a homogeneous model the sensitivity would be highly
concentrated at the electrodes, in the 180° case the skull allows the sensitivity to be very homogeneously
distributed throughout the brain region. The closer the electrodes are to each other, the smaller the part of
the sensitivity that locates within the brain region. Locating the electrodes closer and closer to each other
causes the lead field current to flow more and more within the skin region, decreasing the sensitivity to
the brain region and increasing the noise.
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Fig. 13.4. Sensitivity distribution of EEG electrodes in the spherical head model. The figure
illustrates the lead field current flow lines (thin solid lines), isosensitivity lines (dotted lines) and
the half-sensitivity volumes (shaded region). The sensitivity distribution is in the direction of the
flow lines, and its magnitude is proportional to the density of the flow lines. The lead pair are
designated by small arrows at the surface of the scalp and are separated by an angle of 180°, 120°,
60°, 40°, and 20° shown at the top of each figure.

13.5 THE BEHAVIOR OF THE EEG SIGNAL

From the EEG signal it is possible to differentiate alpha (a), beta (B), delta (d), and theta (®) waves as
well as spikes associated with epilepsy. An example of each waveform is given in Figure 13.5.

The alpha waves have the frequency spectrum of 8-13 Hz and can be measured from the occipital
region in an awake person when the eyes are closed. The frequency band of the beta waves is 13-30 Hz;
these are detectable over the parietal and frontal lobes. The delta waves have the frequency range of 0.5-4
Hz and are detectable in infants and sleeping adults. The theta waves have the frequency range of 4-8 Hz
and are obtained from children and sleeping adults..
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Fig. 13.5. Some examples of EEG waves.

13.6 THE BASIC PRINCIPLES OF EEG DIAGNOSIS

The EEG signal is closely related to the level of consciousness of the person. As the activity increases, the
EEG shifts to higher dominating frequency and lower amplitude. When the eyes are closed, the alpha
waves begin to dominate the EEG. When the person falls asleep, the dominant EEG frequency decreases.
In a certain phase of sleep, rapid eye movement called (REM) sleep, the person dreams and has active
movements of the eyes, which can be seen as a characteristic EEG signal. In deep sleep, the EEG has
large and slow deflections called delta waves. No cerebral activity can be detected from a patient with
complete cerebral death. Examples of the above-mentioned waveforms are given in Figure 13.6..
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Fig. 13.6. EEG activity is dependent on the level of consciousness.
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Magnetoencephalography

14.1 THE BRAIN AS A BIOMAGNETIC GENERATOR

PRECONDITIONS: o
SOURCE: Distribution of impressed current source elements J' (volume source)
CONDUCTOR: Finite, inhomogeneous with spherical symmetry

The bioelectric impressed current density J' associated with brain activity produces an electric and a
magnetic field. The magnetic field is given by Equation 12.6.

4w H(r)= [T x g(l}fv +3 [lei-a; )@?[%J xdS (14.01)

s
J 5F

This signal is called the magnetoencephalogram (MEG). David Cohen was the first to succeed in
detecting the magnetic alpha rhythm. In this first successful experiment he used an induction coil
magnetometer in a magnetically shielded room (Cohen, 1968). David Cohen was also the first scientist to
detect the MEG with a point contact rf-SQUID in 1970 (Cohen, 1972). The amplitude of the MEG is less
than 0.5 picotesla (pT) and its frequency range is similar to that of the EEG. Because the source of the
magnetic field as well as that of the electric field of the brain is the impressed current .7’ these fields have
a very similar appearance.

It should be noted again that the first term on the right side of Equation 12.6 represents the
contribution of the bioelectric sources, whereas the second term represents the contribution of the
inhomogeneities of the volume conductor. The reader can easily verify this fact by realizing that in a
homogeneous conductor, the conductivities are equal on both sides of each interface of the piecewise
homogeneous region described in Equation 12.6, and the difference (¢"; - o) is equal to zero.

In the cylindrically symmetric situation, the lead field flow lines do not cross the interfaces of the
homogeneous regions in the piecewise homogeneous volume conductor and are therefore not affected by
the inhomogeneities. (The spherically symmetric situation is a special case of cylindrical symmetry.) In
the mathematical formula this is indicated by the fact that the second expression on the right side of
Equation 12.6 does not contribute to the lead voltage Viym. The reason for that is that in evaluating
Equation 12.12 we must form the dot product of the secondary source (which is in the radial direction)
with the lead field (which is in the circumferential direction) and the result is equal to zero.

The source of the MEG signal, as well as that of the EEG signal, is the electric activity of the brain.
But as discussed in Chapter 12, the sensitivity distribution of the magnetic measurements differs
essentially from the electric because the lead field current densities .J1y and Jig have an essentially
different form.

As discussed in Chapter 12, if the electrodes of an electric lead are placed on a spherical volume
conductor (the head) and lie on the axis of symmetry of a magnetic lead, the electric and magnetic lead
fields are normal to each other everywhere in the volume conductor, (Malmivuo, 1980; see also Figure
12.2). In this special case, the MEG consequently allows detection of source components that are not
sensed with the EEG. It is important to note that since the sensitivity of the magnetic leads are directed
tangentially, the poor conductivity of the skull has no effect on the shape of the lead field.
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14.2 SENSITIVITY DISTRIBUTION OF MEG-LEADS

14.2.1 Sensitivity Calculation Method

In electroencephalography the head is modeled with concentric spheres. As discussed above, this model is valid
and important also in magnetoencephalography. Because of the low signal level of MEG, the measurements are
usually made as close to the head as possible. Since sensitivity decreases rapidly with distance, and since the
detector coil radius is small compared to the dimensions of the head, the head can be successfully modeled as a
half-space. This holds also for multichannel MEG-detectors, because the detectors are usually placed on a spherical
surface, concentric with the head.

There are two different ways to construct the detector coils. One approach is to construct the detector
channels from first- or second-order gradiometers, where the two or three gradiometer coils are located
concentrically with a baseline on the order of centimeters. The other approach utilizes planar gradiometers; two
adjoining detector coils, located on the same plane, are connected together with the shape of a figure 8.

As explained in Section 12.11 the sensitivity distribution of MEG leads is calculated with a half-space
model. In multichannel cases the total sensitivity is easily obtained by superimposing the sensitivities of each
channel. The sensitivity distributions are illustrated on planes, oriented parallel to the outer surface of the head, and
located at different distances, as illustrated in Figure 14.1. The detector coil is oriented parallel to the surface and
has a radius r. It is assumed that all the coils are located in the same plane. This means that in the single-coil case
the detector is a single-coil magnetometer. In the double-coil case the detector corresponds to a first-order planar
gradiometer.

The lead fields are illustrated as vector fields (Malmivuo and Puikkonen, 1987, 1988). The illustrations are
normalized so that the distances of the planes are 17, 37, and 67, where r is the radius of the magnetometer coil(s).
(The most distant of these planes (6r) is relevant when evaluating the lead fields for small MEG detector coils and
the closest one (1) when applying magnetic stimulation with a large coil.) The lead field is shown on each plane
within a square having a side dimension of 6r. In each figure the vector fields are normalized so that the maximum
vector has approximately unity magnitude. The normalization coefficient nc is given in each figure in relation to
Figure 14.2A, which illustrates the lead field of a single coil on a plane at the distance of 1r from the coil.

The lead fields are illustrated both with lead vector fields and with isosensitivity lines. In the isosensitivity
line illustrations a half-sensitivity volume is also shown. This concept describes the space where the sensitivity is
equal or larger than one half of the maximum sensitivity. The smaller the half-sensitivity volume, the more
accurately it is possible to detect signals from different areas of the volume source.
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Fig. 14.1. Location of the planes for evaluating the sensitivity distribution of MEG lead systems.

14.2.2 Single-Coil Magnetometer

PRECONDITIONS:
SOURCE: Single-coil magnetometer
CONDUCTOR: Finite, inhomogeneous with spherical symmetry along the magnetometer axis

The sensitivity distribution of a single-coil magnetometer is illustrated in Figure 14.2. The
sensitivity distribution has the form of concentric circles throughout the spherical volume conductor. At
the distance of 17 the magnitude of the sensitivity increases as a function of the distance from the axis to a
peak at about r. On the two more distant planes the maximum sensitivity as a function of the radius is not
achieved within the area of the illustration.

It is interesting to compare Figures 14.2 and 12.15. As noted in Chapter 12, these figures represent
the same sensitivity distribution illustrated with different methods. The reader will recognize, that the
curves in Figure 12.15 correspond to the variation of the length of the vectors in Figure 14.2, and thus
they represent the lead field as a function of the radius.

As noted before, the length of the vectors in Figures 14.2B and 14.2C are multiplied by a
normalization coefficient nc so that in each figure the maximum length of the vectors is approximately
the same.

Figures 14.3.A and B illustrate the sensitivity distribution with isosensitivity lines for single coil
magnetometers with 10 mm and 5 mm radii, respectively. The isosensitivity lines join the points in the
space where the lead field current density has the same value. The isosensitivity lines are illustrated with
dashed lines. The figure also illustrates some lead field current flow lines with thin solid lines. Because
the lead field of a single coil magnetometer exhibits cylindrical symmetry, the spherical head model can
be directly superimposed to this figure. It is supposed that the minimum distance from the coil to the
scalp is 20 mm. The sensitivity distribution for a coil with 50 mm radius is presented later in connection
with magnetic stimulation in Figure 24.4.
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The areas of the maximum sensitivity and the half-sensitivity volume are marked with shading. The
location of the maximum sensitivity region and the size of the half-sensitivity volume depend on the
measurement distance and the coil radius, though this relationship is not very strong.
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Fig. 14.2. Sensitivity distribution of a single-coil magnetometer having the radius ». The sensitivity

distribution is given on three parallel planes at distances (A) 17, (B) 37, and (C) 6r. Note that the lengths of
the vectors in B and C are multiplied by the normalization coefficients nc.
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Magnetometer coil r= 5 mm
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Fig. 14.3. Isosensitivity lines in MEG measurement in a spherical head model with a single coil
magnetometer having the radii of A) 10 mm and B) 5 mm. The sensitivity is everywhere oriented
tangential to the symmetry axis which is the line of zero sensitivity. Within the brain area the maximum
sensitivity is located at the surface of the brain and it is indicated with shading.

14.2.3 Planar Gradiometer

PRECONDITIONS:
SOURCE: Planar gradiometer
CONDUCTOR: Conducting half-space

The sensitivity distribution of a planar gradiometer is illustrated in Figure 14.4. From the two adjoining
coils, the one on the left is wound in a "positive" direction, and the one on the right in a correspondingly
"negative" direction (the latter is drawn with a dashed line). This construction is called the planar
gradiometer. This measurement situation may also be achieved by subtracting the measurement signals
from two adjoining magnetometers or (axial) gradiometers.

The sensitivity distribution of a planar gradiometer is no longer mainly circular but has a linear
form within the target region. The more distant the measurement plane is from the detector coil, the more
uniform is the sensitivity distribution. The magnitude of the sensitivity of a planar gradiometer decreases
faster as a function of distance than does that of a single-coil magnetometer. Therefore, the detected
signal originates from sources located mainly in the region closest to the detector.

It should be noted that the sensitivity distribution of a bipolar electric measurement is also linear, as
was shown in Figure 13.4. Thus the sensitivity distribution of a planar gradiometer MEG is very similar
to that of bipolar EEG measurement.

The isosensitivity lines of a planar gradiometer are illustrated in Figure 14.5. Because this
magnetometer arrangement and the lead field it produces are not cylindrically symmetric, the results are
accurate only in an infinite, homogeneous volume conductor or in a homogeneous half-space. Therefore a
spherical head model cannot be superimposed to these illustrations and a conducting half-space model is
used. The distance of the half-space is selected the same as that of the spherical head model directly under
the coil. Figure 14.5.A illustrates the isosensitivity lines in the xz-plane, which is the plane including the

380 forrds: BioLabor Biofizikai és Laboratériumi Szolg. Kft. www.biolabor.hu



axes of the coils. This plane includes also the zero sensitivity line. It approaches a line which makes a
35.27° angle with respect to the z-axis. Figure 14.5.B illustrates the isosensitivity lines in the yz-plane. In

this plane the isosensitivity lines are concentric circles at distances large compared to the coil dimensions.

At distance of 107 and 1007 they differ within 1% and 0.1% from a circle, respectively. The thin solid

lines illustrate the lead field current flow lines. These are not accurate solutions.
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